BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 29668842)

  • 1. GARFIELD-NGS: Genomic vARiants FIltering by dEep Learning moDels in NGS.
    Ravasio V; Ritelli M; Legati A; Giacopuzzi E
    Bioinformatics; 2018 Sep; 34(17):3038-3040. PubMed ID: 29668842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning random forest for predicting oncosomatic variant NGS analysis.
    Pellegrino E; Jacques C; Beaufils N; Nanni I; Carlioz A; Metellus P; Ouafik L
    Sci Rep; 2021 Nov; 11(1):21820. PubMed ID: 34750410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using genotype array data to compare multi- and single-sample variant calls and improve variant call sets from deep coverage whole-genome sequencing data.
    Shringarpure SS; Mathias RA; Hernandez RD; O'Connor TD; Szpiech ZA; Torres R; De La Vega FM; Bustamante CD; Barnes KC; Taub MA;
    Bioinformatics; 2017 Apr; 33(8):1147-1153. PubMed ID: 28035032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated approach for analyzing clinical genomic variant data from next-generation sequencing.
    Crowgey EL; Stabley DL; Chen C; Huang H; Robbins KM; Polson SW; Sol-Church K; Wu CH
    J Biomol Tech; 2015 Apr; 26(1):19-28. PubMed ID: 25649353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ReliableGenome: annotation of genomic regions with high/low variant calling concordance.
    Popitsch N; ; Schuh A; Taylor JC
    Bioinformatics; 2017 Jan; 33(2):155-160. PubMed ID: 27605105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heap: a highly sensitive and accurate SNP detection tool for low-coverage high-throughput sequencing data.
    Kobayashi M; Ohyanagi H; Takanashi H; Asano S; Kudo T; Kajiya-Kanegae H; Nagano AJ; Tainaka H; Tokunaga T; Sazuka T; Iwata H; Tsutsumi N; Yano K
    DNA Res; 2017 Aug; 24(4):397-405. PubMed ID: 28498906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-DAV: CRISPR NGS data analysis and visualization pipeline.
    Wang X; Tilford C; Neuhaus I; Mintier G; Guo Q; Feder JN; Kirov S
    Bioinformatics; 2017 Dec; 33(23):3811-3812. PubMed ID: 28961906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FVC as an adaptive and accurate method for filtering variants from popular NGS analysis pipelines.
    Ren Y; Kong Y; Zhou X; Genchev GZ; Zhou C; Zhao H; Lu H
    Commun Biol; 2022 Sep; 5(1):975. PubMed ID: 36114280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic Evaluation of Sanger Validation of Next-Generation Sequencing Variants.
    Beck TF; Mullikin JC; ; Biesecker LG
    Clin Chem; 2016 Apr; 62(4):647-54. PubMed ID: 26847218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mInDel: a high-throughput and efficient pipeline for genome-wide InDel marker development.
    Lv Y; Liu Y; Zhao H
    BMC Genomics; 2016 Apr; 17():290. PubMed ID: 27079510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. VEF: a variant filtering tool based on ensemble methods.
    Zhang C; Ochoa I
    Bioinformatics; 2020 Apr; 36(8):2328-2336. PubMed ID: 31873730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VIPER: a web application for rapid expert review of variant calls.
    Wöste M; Dugas M
    Bioinformatics; 2018 Jun; 34(11):1928-1929. PubMed ID: 29346510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leveraging known genomic variants to improve detection of variants, especially close-by Indels.
    Vo NS; Phan V
    Bioinformatics; 2018 Sep; 34(17):2918-2926. PubMed ID: 29590294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. myVCF: a desktop application for high-throughput mutations data management.
    Pietrelli A; Valenti L
    Bioinformatics; 2017 Nov; 33(22):3676-3678. PubMed ID: 29036298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel bioinformatics quality control metric for next-generation sequencing experiments in the clinical context.
    Ivanov M; Ivanov M; Kasianov A; Rozhavskaya E; Musienko S; Baranova A; Mileyko V
    Nucleic Acids Res; 2019 Dec; 47(21):e135. PubMed ID: 31511888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lean and deep models for more accurate filtering of SNP and INDEL variant calls.
    Friedman S; Gauthier L; Farjoun Y; Banks E
    Bioinformatics; 2020 Apr; 36(7):2060-2067. PubMed ID: 31830260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capture-based high-coverage NGS: a powerful tool to uncover a wide spectrum of mutation types.
    Wang J; Yu H; Zhang VW; Tian X; Feng Y; Wang G; Gorman E; Wang H; Lutz RE; Schmitt ES; Peacock S; Wong LJ
    Genet Med; 2016 May; 18(5):513-21. PubMed ID: 26402642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NGS-QCbox and Raspberry for Parallel, Automated and Rapid Quality Control Analysis of Large-Scale Next Generation Sequencing (Illumina) Data.
    Katta MA; Khan AW; Doddamani D; Thudi M; Varshney RK
    PLoS One; 2015; 10(10):e0139868. PubMed ID: 26460497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges in exome analysis by LifeScope and its alternative computational pipelines.
    Pranckevičiene E; Rančelis T; Pranculis A; Kučinskas V
    BMC Res Notes; 2015 Sep; 8():421. PubMed ID: 26346699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the filtering of false positive single nucleotide variations by combining genomic features with quality metrics.
    Eren KK; Çınar E; Karakurt HU; Özgür A
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38019945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.