These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 29668846)

  • 21. Reach-dependent reorientation of rotational dynamics in motor cortex.
    Sabatini DA; Kaufman MT
    Nat Commun; 2024 Aug; 15(1):7007. PubMed ID: 39143078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distinct temporal activity patterns in the rat M1 and red nucleus during skilled versus unskilled limb movement.
    Hermer-Vazquez L; Hermer-Vazquez R; Moxon KA; Kuo KH; Viau V; Zhan Y; Chapin JK
    Behav Brain Res; 2004 Apr; 150(1-2):93-107. PubMed ID: 15033283
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Motor cortical correlates of arm resting in the context of a reaching task and implications for prosthetic control.
    Velliste M; Kennedy SD; Schwartz AB; Whitford AS; Sohn JW; McMorland AJ
    J Neurosci; 2014 Apr; 34(17):6011-22. PubMed ID: 24760860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trial-by-Trial Motor Cortical Correlates of a Rapidly Adapting Visuomotor Internal Model.
    Stavisky SD; Kao JC; Ryu SI; Shenoy KV
    J Neurosci; 2017 Feb; 37(7):1721-1732. PubMed ID: 28087767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neural correlates of cognitive control of reaching movements in the dorsal premotor cortex of rhesus monkeys.
    Mirabella G; Pani P; Ferraina S
    J Neurophysiol; 2011 Sep; 106(3):1454-66. PubMed ID: 21697448
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identifying Distinct Neural Features between the Initial and Corrective Phases of Precise Reaching Using AutoLFADS.
    Lee WH; Karpowicz BM; Pandarinath C; Rouse AG
    J Neurosci; 2024 May; 44(20):. PubMed ID: 38538142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Making arm movements within different parts of space: the premotor and motor cortical representation of a coordinate system for reaching to visual targets.
    Caminiti R; Johnson PB; Galli C; Ferraina S; Burnod Y
    J Neurosci; 1991 May; 11(5):1182-97. PubMed ID: 2027042
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Specificity of sensorimotor learning and the neural code: neuronal representations in the primary motor cortex.
    Paz R; Vaadia E
    J Physiol Paris; 2004; 98(4-6):331-48. PubMed ID: 16298517
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinct Laterality in Forelimb-Movement Representations of Rat Primary and Secondary Motor Cortical Neurons with Intratelencephalic and Pyramidal Tract Projections.
    Soma S; Saiki A; Yoshida J; Ríos A; Kawabata M; Sakai Y; Isomura Y
    J Neurosci; 2017 Nov; 37(45):10904-10916. PubMed ID: 28972128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single Neuron Firing Rate Statistics in Motor Cortex During Execution and Observation of Movement.
    Jiang X; Ryu SI; Shenoy KV; Kao JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():981-986. PubMed ID: 30440555
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamical changes and temporal precision of synchronized spiking activity in monkey motor cortex during movement preparation.
    Riehle A; Grammont F; Diesmann M; Grün S
    J Physiol Paris; 2000; 94(5-6):569-82. PubMed ID: 11165921
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correlations Between Primary Motor Cortex Activity with Recent Past and Future Limb Motion During Unperturbed Reaching.
    Takei T; Crevecoeur F; Herter TM; Cross KP; Scott SH
    J Neurosci; 2018 Sep; 38(36):7787-7799. PubMed ID: 30037832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissociation between sustained single-neuron spiking and transient β-LFP oscillations in primate motor cortex.
    Rule ME; Vargas-Irwin CE; Donoghue JP; Truccolo W
    J Neurophysiol; 2017 Apr; 117(4):1524-1543. PubMed ID: 28100654
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differences in motor cortical representations of kinematic variables between action observation and action execution and implications for brain-machine interfaces.
    Willett FR; Suminski AJ; Fagg AH; Hatsopoulos NG
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1334-7. PubMed ID: 25570214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trained slow tracking. II. Bidirectional discharge patterns of cerebellar nuclear, motor cortex, and spindle afferent neurons.
    Schieber MH; Thach WT
    J Neurophysiol; 1985 Nov; 54(5):1228-70. PubMed ID: 2934519
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distinct movement parameters are represented by different neurons in the motor cortex.
    Stark E; Drori R; Asher I; Ben-Shaul Y; Abeles M
    Eur J Neurosci; 2007 Aug; 26(4):1055-66. PubMed ID: 17714196
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neuronal correlates of movement dynamics in the dorsal and ventral premotor area in the monkey.
    Xiao J; Padoa-Schioppa C; Bizzi E
    Exp Brain Res; 2006 Jan; 168(1-2):106-19. PubMed ID: 16177830
    [TBL] [Abstract][Full Text] [Related]  

  • 38. I know what you are doing. a neurophysiological study.
    Umiltà MA; Kohler E; Gallese V; Fogassi L; Fadiga L; Keysers C; Rizzolatti G
    Neuron; 2001 Jul; 31(1):155-65. PubMed ID: 11498058
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Precise spike synchronization in monkey motor cortex involved in preparation for movement.
    Grammont F; Riehle A
    Exp Brain Res; 1999 Sep; 128(1-2):118-22. PubMed ID: 10473749
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ipsilateral-Dominant Control of Limb Movements in Rodent Posterior Parietal Cortex.
    Soma S; Yoshida J; Kato S; Takahashi Y; Nonomura S; Sugimura YK; Ríos A; Kawabata M; Kobayashi K; Kato F; Sakai Y; Isomura Y
    J Neurosci; 2019 Jan; 39(3):485-502. PubMed ID: 30478035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.