BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29669412)

  • 1. Novel Flavoalkaloids from White Tea with Inhibitory Activity against the Formation of Advanced Glycation End Products.
    Li X; Liu GJ; Zhang W; Zhou YL; Ling TJ; Wan XC; Bao GH
    J Agric Food Chem; 2018 May; 66(18):4621-4629. PubMed ID: 29669412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flavoalkaloids with a Pyrrolidinone Ring from Chinese Ancient Cultivated Tea Xi-Gui.
    Cheng J; Wu FH; Wang P; Ke JP; Wan XC; Qiu MH; Bao GH
    J Agric Food Chem; 2018 Aug; 66(30):7948-7957. PubMed ID: 29976052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Cinnamoylated Flavoalkaloids Identified in Tea with Acetylcholinesterase Inhibition Effect.
    Gaur R; Ke JP; Zhang P; Yang Z; Bao GH
    J Agric Food Chem; 2020 Mar; 68(10):3140-3148. PubMed ID: 32053361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Flavoalkaloids with Potent α-Glucosidase and Acetylcholinesterase Inhibitory Activities from Yunnan Black Tea 'Jin-Ya'.
    Li N; Zhu HT; Wang D; Zhang M; Yang CR; Zhang YJ
    J Agric Food Chem; 2020 Jul; 68(30):7955-7963. PubMed ID: 32628847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection and quantification of flavoalkaloids in different tea cultivars and during tea processing using UPLC-TOF-MS/MS.
    Zhang P; Wang W; Liu XH; Yang Z; Gaur R; Wang JJ; Ke JP; Bao GH
    Food Chem; 2021 Mar; 339():127864. PubMed ID: 32858385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. α-Glucosidase Inhibitory Activities and the Interaction Mechanism of Novel Spiro-Flavoalkaloids from YingDe Green Tea.
    Hou ZW; Chen CH; Ke JP; Zhang YY; Qi Y; Liu SY; Yang Z; Ning JM; Bao GH
    J Agric Food Chem; 2022 Jan; 70(1):136-148. PubMed ID: 34964344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel methylated flavoalkaloids from Echa 1 green tea inhibit fat accumulation and enhance stress resistance in Caenorhabditis elegans.
    Chen CH; Yu JY; Yang Z; Ke JP; Qi Y; Yang Y; Gao B; Yao G; Bao GH
    Food Chem; 2023 Jul; 413():135643. PubMed ID: 36773353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C-8 N-Ethyl-2-pyrrolidinone-Substituted Flavan-3-ols from the Leaves of Camellia sinensis var. pubilimba.
    Meng XH; Zhu HT; Yan H; Wang D; Yang CR; Zhang YJ
    J Agric Food Chem; 2018 Jul; 66(27):7150-7155. PubMed ID: 29889511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of proanthocyanidins isolated from tea leaves using high-speed counter-current chromatography.
    Savitri Kumar N; Maduwantha B Wijekoon WM; Kumar V; Nimal Punyasiri PA; Sarath B Abeysinghe I
    J Chromatogr A; 2009 May; 1216(19):4295-302. PubMed ID: 19136115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of
    Dai W; Ramos-Jerz M; Xie D; Peng J; Winterhalter P; Jerz G; Lin Z
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885862
    [No Abstract]   [Full Text] [Related]  

  • 11. Formation Mechanism of Di-
    Jiang Z; Zhou F; Huo H; Han Z; Qin C; Ho CT; Zhang L; Wan X
    J Agric Food Chem; 2023 Feb; 71(6):2975-2989. PubMed ID: 36734013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HPLC analysis of naturally occurring methylated catechins, 3' '- and 4' '-methyl-epigallocatechin gallate, in various fresh tea leaves and commercial teas and their potent inhibitory effects on inducible nitric oxide synthase in macrophages.
    Chiu FL; Lin JK
    J Agric Food Chem; 2005 Sep; 53(18):7035-42. PubMed ID: 16131108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualized analysis of within-tissue spatial distribution of specialized metabolites in tea (Camellia sinensis) using desorption electrospray ionization imaging mass spectrometry.
    Liao Y; Fu X; Zhou H; Rao W; Zeng L; Yang Z
    Food Chem; 2019 Sep; 292():204-210. PubMed ID: 31054666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-ethyl-2-pyrrolidinone substitution enhances binding affinity between tea flavoalkaloids and human serum albumin: Greatly influenced by esterization.
    Liu SY; Zhang YY; Chu GX; Bao GH
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec; 262():120097. PubMed ID: 34182296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction of Epigallocatechin Gallate and Epicatechin Gallate from Tea Leaves Using β-Cyclodextrin.
    Cui L; Liu Y; Liu T; Yuan Y; Yue T; Cai R; Wang Z
    J Food Sci; 2017 Feb; 82(2):394-400. PubMed ID: 28071811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential anthelmintics: polyphenols from the tea plant Camellia sinensis L. are lethally toxic to Caenorhabditis elegans.
    Mukai D; Matsuda N; Yoshioka Y; Sato M; Yamasaki T
    J Nat Med; 2008 Apr; 62(2):155-9. PubMed ID: 18404315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new myricetin-rhamnodiglucoside from Camellia sinensis.
    Hilal Y; Engelhardt UH
    Nat Prod Res; 2009; 23(17):1621-9. PubMed ID: 19851929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro.
    Nakai M; Fukui Y; Asami S; Toyoda-Ono Y; Iwashita T; Shibata H; Mitsunaga T; Hashimoto F; Kiso Y
    J Agric Food Chem; 2005 Jun; 53(11):4593-8. PubMed ID: 15913331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of epigallocatechin-3-O-caffeoate and epigallocatechin-3-O-p-coumaroate in tea leaves by LC/MS-MS analysis.
    Umehara M; Yanae K; Maruki-Uchida H; Sai M
    Food Res Int; 2017 Dec; 102():77-83. PubMed ID: 29196011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the constituents and antioxidant activity of Brazilian green tea (Camellia sinensis var. assamica IAC-259 cultivar) extracts.
    Saito ST; Gosmann G; Saffi J; Presser M; Richter MF; Bergold AM
    J Agric Food Chem; 2007 Nov; 55(23):9409-14. PubMed ID: 17937477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.