These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 29669733)
1. Evolution of DNAase I Hypersensitive Sites in MHC Regulatory Regions of Primates. Jin Y; Gittelman RM; Lu Y; Liu X; Li MD; Ling F; Akey JM Genetics; 2018 Jun; 209(2):579-589. PubMed ID: 29669733 [TBL] [Abstract][Full Text] [Related]
2. Positive selection of the TRIM family regulatory region in primate genomes. He DD; Lu Y; Gittelman R; Jin Y; Ling F; Joshua A Proc Biol Sci; 2016 Oct; 283(1840):. PubMed ID: 27733547 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples. Jin W; Tang Q; Wan M; Cui K; Zhang Y; Ren G; Ni B; Sklar J; Przytycka TM; Childs R; Levens D; Zhao K Nature; 2015 Dec; 528(7580):142-6. PubMed ID: 26605532 [TBL] [Abstract][Full Text] [Related]
4. Extensive evolutionary changes in regulatory element activity during human origins are associated with altered gene expression and positive selection. Shibata Y; Sheffield NC; Fedrigo O; Babbitt CC; Wortham M; Tewari AK; London D; Song L; Lee BK; Iyer VR; Parker SC; Margulies EH; Wray GA; Furey TS; Crawford GE PLoS Genet; 2012 Jun; 8(6):e1002789. PubMed ID: 22761590 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide mapping of DNase I hypersensitive sites revealed differential chromatin accessibility and regulatory DNA elements under drought stress in rice cultivars. Rajkumar MS; Tembhare K; Garg R; Jain M Plant J; 2024 Aug; 119(4):2063-2079. PubMed ID: 38859561 [TBL] [Abstract][Full Text] [Related]
6. Evolution and Comprehensive Analysis of DNaseI Hypersensitive Sites in Regulatory Regions of Primate Brain-Related Genes. Lu Y; Wang X; Yu H; Li J; Jiang Z; Chen B; Lu Y; Wang W; Han C; Ouyang Y; Huang L; Chen C; Tian W; Ling F Front Genet; 2019; 10():152. PubMed ID: 30930929 [TBL] [Abstract][Full Text] [Related]
7. Evaluating Chromatin Accessibility Differences Across Multiple Primate Species Using a Joint Modeling Approach. Edsall LE; Berrio A; Majoros WH; Swain-Lenz D; Morrow S; Shibata Y; Safi A; Wray GA; Crawford GE; Allen AS Genome Biol Evol; 2019 Oct; 11(10):3035-3053. PubMed ID: 31599933 [TBL] [Abstract][Full Text] [Related]
8. Systematic analyses of regulatory variants in DNase I hypersensitive sites identified two novel lung cancer susceptibility loci. Dai J; Li Z; Amos CI; Hung RJ; Tardon A; Andrew AS; Chen C; Christiani DC; Albanes D; van der Heijden EHFM; Duell EJ; Rennert G; Mckay JD; Yuan JM; Field JK; Manjer J; Grankvist K; Le Marchand L; Teare MD; Schabath MB; Aldrich MC; Tsao MS; Lazarus P; Lam S; Bojesen SE; Arnold S; Wu X; Haugen A; Janout V; Johansson M; Brhane Y; Fernandez-Somoano A; Kiemeney LA; Davies MPA; Zienolddiny S; Hu Z; Shen H Carcinogenesis; 2019 May; 40(3):432-440. PubMed ID: 30590402 [TBL] [Abstract][Full Text] [Related]
9. The accessible chromatin landscape of the human genome. Thurman RE; Rynes E; Humbert R; Vierstra J; Maurano MT; Haugen E; Sheffield NC; Stergachis AB; Wang H; Vernot B; Garg K; John S; Sandstrom R; Bates D; Boatman L; Canfield TK; Diegel M; Dunn D; Ebersol AK; Frum T; Giste E; Johnson AK; Johnson EM; Kutyavin T; Lajoie B; Lee BK; Lee K; London D; Lotakis D; Neph S; Neri F; Nguyen ED; Qu H; Reynolds AP; Roach V; Safi A; Sanchez ME; Sanyal A; Shafer A; Simon JM; Song L; Vong S; Weaver M; Yan Y; Zhang Z; Zhang Z; Lenhard B; Tewari M; Dorschner MO; Hansen RS; Navas PA; Stamatoyannopoulos G; Iyer VR; Lieb JD; Sunyaev SR; Akey JM; Sabo PJ; Kaul R; Furey TS; Dekker J; Crawford GE; Stamatoyannopoulos JA Nature; 2012 Sep; 489(7414):75-82. PubMed ID: 22955617 [TBL] [Abstract][Full Text] [Related]
10. Genome-Wide Identification of Regulatory Sequences Undergoing Accelerated Evolution in the Human Genome. Dong X; Wang X; Zhang F; Tian W Mol Biol Evol; 2016 Oct; 33(10):2565-75. PubMed ID: 27401230 [TBL] [Abstract][Full Text] [Related]
11. Identification of breast cancer associated variants that modulate transcription factor binding. Liu Y; Walavalkar NM; Dozmorov MG; Rich SS; Civelek M; Guertin MJ PLoS Genet; 2017 Sep; 13(9):e1006761. PubMed ID: 28957321 [TBL] [Abstract][Full Text] [Related]
12. Genome-Wide Mapping of DNase I Hypersensitive Sites in Tomato. Li R; Cui X Methods Mol Biol; 2018; 1830():367-379. PubMed ID: 30043382 [TBL] [Abstract][Full Text] [Related]
13. Personal and population genomics of human regulatory variation. Vernot B; Stergachis AB; Maurano MT; Vierstra J; Neph S; Thurman RE; Stamatoyannopoulos JA; Akey JM Genome Res; 2012 Sep; 22(9):1689-97. PubMed ID: 22955981 [TBL] [Abstract][Full Text] [Related]
15. Genome-scale identification of Caenorhabditis elegans regulatory elements by tiling-array mapping of DNase I hypersensitive sites. Shi B; Guo X; Wu T; Sheng S; Wang J; Skogerbø G; Zhu X; Chen R BMC Genomics; 2009 Feb; 10():92. PubMed ID: 19243610 [TBL] [Abstract][Full Text] [Related]
16. Genome-Wide Characterization of DNase I-Hypersensitive Sites and Cold Response Regulatory Landscapes in Grasses. Han J; Wang P; Wang Q; Lin Q; Chen Z; Yu G; Miao C; Dao Y; Wu R; Schnable JC; Tang H; Wang K Plant Cell; 2020 Aug; 32(8):2457-2473. PubMed ID: 32471863 [TBL] [Abstract][Full Text] [Related]
17. Proliferation of Regulatory DNA Elements Derived from Transposable Elements in the Maize Genome. Zhao H; Zhang W; Chen L; Wang L; Marand AP; Wu Y; Jiang J Plant Physiol; 2018 Apr; 176(4):2789-2803. PubMed ID: 29463772 [TBL] [Abstract][Full Text] [Related]
18. Correlation between DNase I hypersensitive site distribution and gene expression in HeLa S3 cells. Wang YM; Zhou P; Wang LY; Li ZH; Zhang YN; Zhang YX PLoS One; 2012; 7(8):e42414. PubMed ID: 22900019 [TBL] [Abstract][Full Text] [Related]
19. Most brain disease-associated and eQTL haplotypes are not located within transcription factor DNase-seq footprints in brain. Handel AE; Gallone G; Zameel Cader M; Ponting CP Hum Mol Genet; 2017 Jan; 26(1):79-89. PubMed ID: 27798116 [TBL] [Abstract][Full Text] [Related]
20. Refinement of primate copy number variation hotspots identifies candidate genomic regions evolving under positive selection. Gokcumen O; Babb PL; Iskow RC; Zhu Q; Shi X; Mills RE; Ionita-Laza I; Vallender EJ; Clark AG; Johnson WE; Lee C Genome Biol; 2011; 12(5):R52. PubMed ID: 21627829 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]