BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 29669921)

  • 1. A selective class of inhibitors for the CLC-Ka chloride ion channel.
    Koster AK; Wood CAP; Thomas-Tran R; Chavan TS; Almqvist J; Choi KH; Du Bois J; Maduke M
    Proc Natl Acad Sci U S A; 2018 May; 115(21):E4900-E4909. PubMed ID: 29669921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Insights into the Mechanism of NO
    Lagostena L; Zifarelli G; Picollo A
    J Am Soc Nephrol; 2019 Feb; 30(2):293-302. PubMed ID: 30635372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of sites responsible for the potentiating effect of niflumic acid on ClC-Ka kidney chloride channels.
    Zifarelli G; Liantonio A; Gradogna A; Picollo A; Gramegna G; De Bellis M; Murgia AR; Babini E; Camerino DC; Pusch M
    Br J Pharmacol; 2010 Aug; 160(7):1652-61. PubMed ID: 20649569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A regulatory calcium-binding site at the subunit interface of CLC-K kidney chloride channels.
    Gradogna A; Babini E; Picollo A; Pusch M
    J Gen Physiol; 2010 Sep; 136(3):311-23. PubMed ID: 20805576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and validation of a potent and specific inhibitor for the CLC-2 chloride channel.
    Koster AK; Reese AL; Kuryshev Y; Wen X; McKiernan KA; Gray EE; Wu C; Huguenard JR; Maduke M; Du Bois J
    Proc Natl Acad Sci U S A; 2020 Dec; 117(51):32711-32721. PubMed ID: 33277431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of K149, G352, and H401 in the channel functions of ClC-0: testing the predictions from theoretical calculations.
    Zhang XD; Li Y; Yu WP; Chen TY
    J Gen Physiol; 2006 Apr; 127(4):435-47. PubMed ID: 16567465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the CLC-1 chloride channel from
    Park E; MacKinnon R
    Elife; 2018 May; 7():. PubMed ID: 29809153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico model of the human ClC-Kb chloride channel: pore mapping, biostructural pathology and drug screening.
    Louet M; Bitam S; Bakouh N; Bignon Y; Planelles G; Lagorce D; Miteva MA; Eladari D; Teulon J; Villoutreix BO
    Sci Rep; 2017 Aug; 7(1):7249. PubMed ID: 28775266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gating of the voltage-dependent chloride channel CIC-0 by the permeant anion.
    Pusch M; Ludewig U; Rehfeldt A; Jentsch TJ
    Nature; 1995 Feb; 373(6514):527-31. PubMed ID: 7845466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A common sequence variation of the CLCNKB gene strongly activates ClC-Kb chloride channel activity.
    Jeck N; Waldegger P; Doroszewicz J; Seyberth H; Waldegger S
    Kidney Int; 2004 Jan; 65(1):190-7. PubMed ID: 14675050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion transit pathways and gating in ClC chloride channels.
    Yin J; Kuang Z; Mahankali U; Beck TL
    Proteins; 2004 Nov; 57(2):414-21. PubMed ID: 15340928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structural basis of ClC chloride channel function.
    Dutzler R
    Trends Neurosci; 2004 Jun; 27(6):315-20. PubMed ID: 15165735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for ion conduction and gating in ClC chloride channels.
    Dutzler R
    FEBS Lett; 2004 Apr; 564(3):229-33. PubMed ID: 15111101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamical model of the CLC-2 ion channel reveals conformational changes associated with selectivity-filter gating.
    McKiernan KA; Koster AK; Maduke M; Pande VS
    PLoS Comput Biol; 2020 Mar; 16(3):e1007530. PubMed ID: 32226009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of an N-terminal amino acid of the CLC-3 chloride channel critical in phosphorylation-dependent activation of a CaMKII-activated chloride current.
    Robinson NC; Huang P; Kaetzel MA; Lamb FS; Nelson DJ
    J Physiol; 2004 Apr; 556(Pt 2):353-68. PubMed ID: 14754994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of a high affinity peptide inhibitor of ClC-2 chloride channels.
    Thompson CH; Olivetti PR; Fuller MD; Freeman CS; McMaster D; French RJ; Pohl J; Kubanek J; McCarty NA
    J Biol Chem; 2009 Sep; 284(38):26051-62. PubMed ID: 19574231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-dependent interactions of Cd2+ and a carboxylate blocker with the rat C1C-1 chloride channel and its R304E mutant in the Sf-9 insect cell line.
    Rychkov GY; Astill DS; Bennetts B; Hughes BP; Bretag AH; Roberts ML
    J Physiol; 1997 Jun; 501 ( Pt 2)(Pt 2):355-62. PubMed ID: 9192307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissecting a regulatory calcium-binding site of CLC-K kidney chloride channels.
    Gradogna A; Fenollar-Ferrer C; Forrest LR; Pusch M
    J Gen Physiol; 2012 Dec; 140(6):681-96. PubMed ID: 23148261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular modeling of p-chlorophenoxyacetic acid binding to the CLC-0 channel.
    Moran O; Traverso S; Elia L; Pusch M
    Biochemistry; 2003 May; 42(18):5176-85. PubMed ID: 12731858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cysteine modification of a putative pore residue in ClC-0: implication for the pore stoichiometry of ClC chloride channels.
    Lin CW; Chen TY
    J Gen Physiol; 2000 Oct; 116(4):535-46. PubMed ID: 11004203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.