These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 29669997)

  • 1. Fabrication of FeAl Intermetallic Foams by Tartaric Acid-Assisted Self-Propagating High-Temperature Synthesis.
    Karczewski K; Stępniowski WJ; Salerno M
    Materials (Basel); 2018 Apr; 11(4):. PubMed ID: 29669997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino Acids Aided Sintering for the Formation of Highly Porous FeAl Intermetallic Alloys.
    Karczewski K; Stepniowski WJ; Salerno M
    Materials (Basel); 2017 Jul; 10(7):. PubMed ID: 28773106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Structure of FeAl Sinters Fabricated Using Cyclic Loading.
    Durejko T; Ziętala M; Bojar Z
    Materials (Basel); 2015 Feb; 8(2):575-585. PubMed ID: 28787958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Low-Symmetry Structures from Phase Equilibrium of Fe-Al System-Microstructures and Mechanical Properties.
    Matysik P; Jóźwiak S; Czujko T
    Materials (Basel); 2015 Mar; 8(3):914-931. PubMed ID: 28787979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Synthesis of Fe-Al Alloys from Elemental Powders using Laser Engineered Net Shaping.
    Pęska M; Karczewski K; Rzeszotarska M; Polański M
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31979020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study on compressive deformation and corrosion behaviour of heat treated Ti4wt%Al foam of different porosity made of milled and unmilled powders.
    Singh P; Singh IB; Mondal DP
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():918-929. PubMed ID: 30813099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Oxygen Partial Pressure on Microstructure and Properties of Fe40Al Alloy Sintered under Vacuum.
    Siemiaszko D; Kowalska B; Jóźwik P; Kwiatkowska M
    Materials (Basel); 2015 Mar; 8(4):1513-1525. PubMed ID: 28788015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic emission analysis of the compressive deformation of iron foams and their biocompatibility study.
    Park H; Hong K; Kang JS; Um T; Knapek M; Minárik P; Sung YE; Máthis K; Yamamoto A; Kim HK; Choe H
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():367-376. PubMed ID: 30678922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural, Electrical, and Mechanical Properties Investigation of Open-Cell Aluminum Foams Obtained by Spark Plasma Sintering and Replication on Polyurethane Template.
    Kosenko A; Pushnitsa K; Kim A; Novikov P; Popovich AA
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication, morphology and mechanical properties of Ti and metastable Ti-based alloy foams for biomedical applications.
    Rivard J; Brailovski V; Dubinskiy S; Prokoshkin S
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():421-33. PubMed ID: 25491847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered bio-nanocomposite magnesium scaffold for bone tissue regeneration.
    Parai R; Bandyopadhyay-Ghosh S
    J Mech Behav Biomed Mater; 2019 Aug; 96():45-52. PubMed ID: 31029994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of sintering temperature on physical and compositional properties of alpha-tricalcium phosphate foam.
    Udoh K; Munar ML; Maruta M; Matsuya S; Ishikawa K
    Dent Mater J; 2010 Mar; 29(2):154-9. PubMed ID: 20379025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tensile Properties and Fracture Behavior of Aluminum Alloy Foam Fabricated from Die Castings without Using Blowing Agent by Friction Stir Processing Route.
    Hangai Y; Kamada H; Utsunomiya T; Kitahara S; Kuwazuru O; Yoshikawa N
    Materials (Basel); 2014 Mar; 7(3):2382-2394. PubMed ID: 28788573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation and Properties of Biomedical Ti-Ta Foams Prepared from Nanoprecursors by Thermal Dealloying Process.
    Adamek G; Kozlowski M; Jurczyk MU; Wirstlein P; Zurawski J; Jakubowicz J
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31443338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Microstructural Evolution Model for Growth of Ultra-Fine Al
    Kopec M; Jóźwiak S; Kowalewski ZL
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32585925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructural and Mechanical Properties of Binary Ti-Rich Fe⁻Ti, Al-Rich Fe⁻Al, and Ti⁻Al Alloys.
    Chanbi D; Adnane Amara L; Ogam E; Amara SE; Fellah ZEA
    Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30708962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication, Structural Characterization and Uniaxial Tensile Properties of Novel Sintered Multi-Layer Wire Mesh Porous Plates.
    Duan L; Zhou Z; Yao B
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29342129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct separation of arsenic and antimony oxides by high-temperature filtration with porous FeAl intermetallic.
    Zhang H; Liu X; Jiang Y; Gao L; Yu L; Lin N; He Y; Liu CT
    J Hazard Mater; 2017 Sep; 338():364-371. PubMed ID: 28586751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of the Traverse Feed Rate on the Microstructure and Mechanical Properties of Laser Deposited Fe₃Al (Zr,B) Intermetallic Alloy.
    Łazińska M; Durejko T; Czujko T; Bojar Z
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29757970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of porous NiTi biomedical alloy by SHS method.
    Saadati A; Aghajani H
    J Mater Sci Mater Med; 2019 Aug; 30(8):92. PubMed ID: 31388767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.