BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 29670055)

  • 1. A New Vegetation Segmentation Approach for Cropped Fields Based on Threshold Detection from Hue Histograms.
    Hassanein M; Lari Z; El-Sheimy N
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29670055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV.
    de Oliveira DC; Wehrmeister MA
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling of machine learning methods to improve estimation of ground coverage from unmanned aerial vehicle (UAV) imagery for high-throughput phenotyping of crops.
    Hu P; Chapman SC; Zheng B
    Funct Plant Biol; 2021 Jul; 48(8):766-779. PubMed ID: 33663681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of Unmanned Aerial Vehicle Based Imagery in Turfgrass Field Trials.
    Zhang J; Virk S; Porter W; Kenworthy K; Sullivan D; Schwartz B
    Front Plant Sci; 2019; 10():279. PubMed ID: 30930917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture.
    Mazzia V; Comba L; Khaliq A; Chiaberge M; Gay P
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and Comprehensive Evaluation of Resistant Weeds Using Unmanned Aerial Vehicle-Based Multispectral Imagery.
    Xia F; Quan L; Lou Z; Sun D; Li H; Lv X
    Front Plant Sci; 2022; 13():938604. PubMed ID: 35937335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model for phenotyping crop fractional vegetation cover using imagery from unmanned aerial vehicles.
    Wan L; Zhu J; Du X; Zhang J; Han X; Zhou W; Li X; Liu J; Liang F; He Y; Cen H
    J Exp Bot; 2021 Jun; 72(13):4691-4707. PubMed ID: 33963382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic Hotspot and Sun Glint Detection in UAV Multispectral Images.
    Ortega-Terol D; Hernandez-Lopez D; Ballesteros R; Gonzalez-Aguilera D
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29036930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cotton Yield Estimation Based on Vegetation Indices and Texture Features Derived From RGB Image.
    Ma Y; Ma L; Zhang Q; Huang C; Yi X; Chen X; Hou T; Lv X; Zhang Z
    Front Plant Sci; 2022; 13():925986. PubMed ID: 35783985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Multilayer Perceptron with Automatic Relevance Determination on Weed Mapping Using UAV Multispectral Imagery.
    Tamouridou AA; Alexandridis TK; Pantazi XE; Lagopodi AL; Kashefi J; Kasampalis D; Kontouris G; Moshou D
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29019957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenotyping Conservation Agriculture Management Effects on Ground and Aerial Remote Sensing Assessments of Maize Hybrids Performance in Zimbabwe.
    Gracia-Romero A; Vergara-Díaz O; Thierfelder C; Cairns JE; Kefauver SC; Araus JL
    Remote Sens (Basel); 2018; 10(2):349. PubMed ID: 32704486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Improved Crop Scouting Technique Incorporating Unmanned Aerial Vehicle-Assisted Multispectral Crop Imaging into Conventional Scouting Practice for Gummy Stem Blight in Watermelon.
    Kalischuk M; Paret ML; Freeman JH; Raj D; Da Silva S; Eubanks S; Wiggins DJ; Lollar M; Marois JJ; Mellinger HC; Das J
    Plant Dis; 2019 Jul; 103(7):1642-1650. PubMed ID: 31082305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of remote-weed mapping and an autonomous spraying unmanned aerial vehicle for site-specific weed management.
    Hunter JE; Gannon TW; Richardson RJ; Yelverton FH; Leon RG
    Pest Manag Sci; 2020 Apr; 76(4):1386-1392. PubMed ID: 31622004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery.
    Huang H; Deng J; Lan Y; Yang A; Deng X; Zhang L
    PLoS One; 2018; 13(4):e0196302. PubMed ID: 29698500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapeseed Seedling Stand Counting and Seeding Performance Evaluation at Two Early Growth Stages Based on Unmanned Aerial Vehicle Imagery.
    Zhao B; Zhang J; Yang C; Zhou G; Ding Y; Shi Y; Zhang D; Xie J; Liao Q
    Front Plant Sci; 2018; 9():1362. PubMed ID: 30298081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of Nitrogen Nutrition Status in Winter Wheat From Unmanned Aerial Vehicle Based Multi-Angular Multispectral Imagery.
    Lu N; Wang W; Zhang Q; Li D; Yao X; Tian Y; Zhu Y; Cao W; Baret F; Liu S; Cheng T
    Front Plant Sci; 2019; 10():1601. PubMed ID: 31921250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ramie Yield Estimation Based on UAV RGB Images.
    Fu H; Wang C; Cui G; She W; Zhao L
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Citrus Tree Segmentation from UAV Images Based on Monocular Machine Vision in a Natural Orchard Environment.
    Chen Y; Hou C; Tang Y; Zhuang J; Lin J; He Y; Guo Q; Zhong Z; Lei H; Luo S
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31888248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using unmanned aerial systems and deep learning for agriculture mapping in Dubai.
    El Hoummaidi L; Larabi A; Alam K
    Heliyon; 2021 Oct; 7(10):e08154. PubMed ID: 34703924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting Pest-Infested Forest Damage through Multispectral Satellite Imagery and Improved UNet+.
    Zhang J; Cong S; Zhang G; Ma Y; Zhang Y; Huang J
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.