These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29670186)

  • 21. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity.
    Randeniya LK; Bendavid A; Martin PJ; Tran CD
    Small; 2010 Aug; 6(16):1806-11. PubMed ID: 20665629
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiscale mechanics of the lateral pressure effect on enhancing the load transfer between polymer coated CNTs.
    Yazdandoost F; Mirzaeifar R; Qin Z; Buehler MJ
    Nanoscale; 2017 May; 9(17):5565-5576. PubMed ID: 28405667
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of extreme mechanical densification on the electrical properties of carbon nanotube micro-yarns.
    Miralaei C; Le Floch S; Debord R; Nguyen HV; Da Silva JC; San-Miguel A; Le Poche H; Pailhès S; Pischedda V
    Nanotechnology; 2022 Apr; 33(27):. PubMed ID: 35319494
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal annealing effects on multi-walled carbon nanotube yarns probed by Raman spectroscopy.
    Pierlot AP; Woodhead AL; Church JS
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 117():598-603. PubMed ID: 24103230
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-plied and twist-stable carbon nanotube yarn artificial muscles driven by organic solvent adsorption.
    Jin K; Zhang S; Zhou S; Qiao J; Song Y; Di J; Zhang D; Li Q
    Nanoscale; 2018 May; 10(17):8180-8186. PubMed ID: 29676416
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increased tensile strength of carbon nanotube yarns and sheets through chemical modification and electron beam irradiation.
    Miller SG; Williams TS; Baker JS; Solá F; Lebron-Colon M; McCorkle LS; Wilmoth NG; Gaier J; Chen M; Meador MA
    ACS Appl Mater Interfaces; 2014 May; 6(9):6120-6. PubMed ID: 24720450
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics.
    Su F; Miao M
    Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrospinning of continuous poly (L-lactide) yarns: Effect of twist on the morphology, thermal properties and mechanical behavior.
    Maleki H; Gharehaghaji AA; Dijkstra PJ
    J Mech Behav Biomed Mater; 2017 Jul; 71():231-237. PubMed ID: 28365539
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Torsional behaviors of polymer-infiltrated carbon nanotube yarn muscles studied with atomic force microscopy.
    Kwon CH; Chun KY; Kim SH; Lee JH; Kim JH; Lima MD; Baughman RH; Kim SJ
    Nanoscale; 2015 Feb; 7(6):2489-96. PubMed ID: 25567113
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Field emission behavior of carbon nanotube yarn for micro-resolution X-ray tube cathode.
    Hwang JW; Mo CB; Jung HK; Ryu S; Hong SH
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7386-90. PubMed ID: 24245260
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hybrid carbon nanotube yarn artificial muscle inspired by spider dragline silk.
    Chun KY; Hyeong Kim S; Kyoon Shin M; Hoon Kwon C; Park J; Tae Kim Y; Spinks GM; Lima MD; Haines CS; Baughman RH; Jeong Kim S
    Nat Commun; 2014; 5():3322. PubMed ID: 24557457
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon nanotube yarn strain sensors.
    Zhao H; Zhang Y; Bradford PD; Zhou Q; Jia Q; Yuan FG; Zhu Y
    Nanotechnology; 2010 Jul; 21(30):305502. PubMed ID: 20610871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flexible electrochromic materials based on CNT/PDA hybrids.
    Varghese Hansen R; Yang J; Zheng L
    Adv Colloid Interface Sci; 2018 Aug; 258():21-35. PubMed ID: 30072030
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multifunctional carbon nanotube yarns by downsizing an ancient technology.
    Zhang M; Atkinson KR; Baughman RH
    Science; 2004 Nov; 306(5700):1358-61. PubMed ID: 15550667
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Melt Spinning of Highly Stretchable, Electrically Conductive Filament Yarns.
    Probst H; Katzer K; Nocke A; Hickmann R; Zimmermann M; Cherif C
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33669330
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Directional neurite outgrowth on superaligned carbon nanotube yarn patterned substrate.
    Fan L; Feng C; Zhao W; Qian L; Wang Y; Li Y
    Nano Lett; 2012 Jul; 12(7):3668-73. PubMed ID: 22694271
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrical properties in magnetic field of macroscopic carbon nanotube objects.
    Sheng L; Gao W; Ma X; Zhao X; Cao S; Zhang J
    J Nanosci Nanotechnol; 2010 Jun; 10(6):4049-53. PubMed ID: 20355412
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Room-Temperature Hydrogen-Gas Sensor Based on Carbon Nanotube Yarn.
    Han M; Kim JK; Lee J; An HK; Yun JP; Kang SW; Jung D
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4011-4014. PubMed ID: 31968415
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles.
    Lima MD; Li N; Jung de Andrade M; Fang S; Oh J; Spinks GM; Kozlov ME; Haines CS; Suh D; Foroughi J; Kim SJ; Chen Y; Ware T; Shin MK; Machado LD; Fonseca AF; Madden JD; Voit WE; Galvão DS; Baughman RH
    Science; 2012 Nov; 338(6109):928-32. PubMed ID: 23161994
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of twist and porosity on the electrical conductivity of carbon nanofiber yarns.
    Chawla S; Naraghi M; Davoudi A
    Nanotechnology; 2013 Jun; 24(25):255708. PubMed ID: 23727878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.