These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 29670639)
1. FdC1 and Leaf-Type Ferredoxins Channel Electrons From Photosystem I to Different Downstream Electron Acceptors. Guan X; Chen S; Voon CP; Wong KB; Tikkanen M; Lim BL Front Plant Sci; 2018; 9():410. PubMed ID: 29670639 [TBL] [Abstract][Full Text] [Related]
2. FdC1, a novel ferredoxin protein capable of alternative electron partitioning, increases in conditions of acceptor limitation at photosystem I. Voss I; Goss T; Murozuka E; Altmann B; McLean KJ; Rigby SE; Munro AW; Scheibe R; Hase T; Hanke GT J Biol Chem; 2011 Jan; 286(1):50-9. PubMed ID: 20966083 [TBL] [Abstract][Full Text] [Related]
4. Primary leaf-type ferredoxin 1 participates in photosynthetic electron transport and carbon assimilation in rice. He L; Li M; Qiu Z; Chen D; Zhang G; Wang X; Chen G; Hu J; Gao Z; Dong G; Ren D; Shen L; Zhang Q; Guo L; Qian Q; Zeng D; Zhu L Plant J; 2020 Sep; 104(1):44-58. PubMed ID: 32603511 [TBL] [Abstract][Full Text] [Related]
5. Functional analysis of two isoforms of leaf-type ferredoxin-NADP(+)-oxidoreductase in rice using the heterologous expression system of Arabidopsis. Higuchi-Takeuchi M; Ichikawa T; Kondou Y; Matsui K; Hasegawa Y; Kawashima M; Sonoike K; Mori M; Hirochika H; Matsui M Plant Physiol; 2011 Sep; 157(1):96-108. PubMed ID: 21734114 [TBL] [Abstract][Full Text] [Related]
6. Variable photosynthetic roles of two leaf-type ferredoxins in arabidopsis, as revealed by RNA interference. Hanke GT; Hase T Photochem Photobiol; 2008; 84(6):1302-9. PubMed ID: 18673322 [TBL] [Abstract][Full Text] [Related]
7. Analysis of reductant supply systems for ferredoxin-dependent sulfite reductase in photosynthetic and nonphotosynthetic organs of maize. Yonekura-Sakakibara K; Onda Y; Ashikari T; Tanaka Y; Kusumi T; Hase T Plant Physiol; 2000 Mar; 122(3):887-94. PubMed ID: 10712553 [TBL] [Abstract][Full Text] [Related]
8. Kinetic evidence for the PsaE-dependent transient ternary complex photosystem I/Ferredoxin/Ferredoxin:NADP(+) reductase in a cyanobacterium. van Thor JJ; Geerlings TH; Matthijs HC; Hellingwerf KJ Biochemistry; 1999 Sep; 38(39):12735-46. PubMed ID: 10504244 [TBL] [Abstract][Full Text] [Related]
9. Site-specific mutagenesis demonstrates that the structural requirements for efficient electron transfer in Anabaena ferredoxin and flavodoxin are highly dependent on the reaction partner: kinetic studies with photosystem I, ferredoxin:NADP+ reductase, and cytochrome c. Navarro JA; Hervás M; Genzor CG; Cheddar G; Fillat MF; de la Rosa MA; Gómez-Moreno C; Cheng H; Xia B; Chae YK Arch Biochem Biophys; 1995 Aug; 321(1):229-38. PubMed ID: 7639526 [TBL] [Abstract][Full Text] [Related]
10. Electron transfer of site-specifically cross-linked complexes between ferredoxin and ferredoxin-NADP(+) reductase. Kimata-Ariga Y; Sakakibara Y; Ikegami T; Hase T Biochemistry; 2010 Nov; 49(46):10013-23. PubMed ID: 20954716 [TBL] [Abstract][Full Text] [Related]
11. Rational redesign of the ferredoxin-NADP Wiegand K; Winkler M; Rumpel S; Kannchen D; Rexroth S; Hase T; Farès C; Happe T; Lubitz W; Rögner M Biochim Biophys Acta Bioenerg; 2018 Apr; 1859(4):253-262. PubMed ID: 29378161 [TBL] [Abstract][Full Text] [Related]
12. EPR studies of ferredoxin in spinach and cyanobacterial thylakoids related to photosystem I-driven NADP Utschig LM; Duckworth CL; Niklas J; Poluektov OG Photosynth Res; 2024 Mar; ():. PubMed ID: 38441791 [TBL] [Abstract][Full Text] [Related]
13. Differential response of genes for ferredoxin and ferredoxin:NADP+ oxidoreductase to nitrate and light in maize leaves. Sakakibara H J Plant Physiol; 2003 Jan; 160(1):65-70. PubMed ID: 12685047 [TBL] [Abstract][Full Text] [Related]
14. Mutations of Glu92 in ferredoxin I from spinach leaves produce proteins fully functional in electron transfer but less efficient in supporting NADP+ photoreduction. Piubelli L; Aliverti A; Bellintani F; Zanetti G Eur J Biochem; 1996 Mar; 236(2):465-9. PubMed ID: 8612617 [TBL] [Abstract][Full Text] [Related]
15. Arabidopsis Root-Type Ferredoxin:NADP(H) Oxidoreductase 2 is Involved in Detoxification of Nitrite in Roots. Hachiya T; Ueda N; Kitagawa M; Hanke G; Suzuki A; Hase T; Sakakibara H Plant Cell Physiol; 2016 Nov; 57(11):2440-2450. PubMed ID: 27615794 [TBL] [Abstract][Full Text] [Related]
16. Influence of pH and ionic strength on electrostatic properties of ferredoxin, FNR, and hydrogenase and the rate constants of their interaction. Diakonova AN; Khrushchev SS; Kovalenko IB; Riznichenko GY; Rubin AB Phys Biol; 2016 Oct; 13(5):056004. PubMed ID: 27716644 [TBL] [Abstract][Full Text] [Related]
17. Altered photosynthetic electron channelling into cyclic electron flow and nitrite assimilation in a mutant of ferredoxin:NADP(H) reductase. Hanke GT; Endo T; Satoh F; Hase T Plant Cell Environ; 2008 Jul; 31(7):1017-28. PubMed ID: 18410491 [TBL] [Abstract][Full Text] [Related]
18. Gallium ferredoxin as a tool to study the effects of ferredoxin binding to photosystem I without ferredoxin reduction. Mignée C; Mutoh R; Krieger-Liszkay A; Kurisu G; Sétif P Photosynth Res; 2017 Dec; 134(3):251-263. PubMed ID: 28205062 [TBL] [Abstract][Full Text] [Related]
19. Structure and function of plant-type ferredoxins. Fukuyama K Photosynth Res; 2004; 81(3):289-301. PubMed ID: 16034533 [TBL] [Abstract][Full Text] [Related]
20. Drought stress-induced upregulation of components involved in ferredoxin-dependent cyclic electron transfer. Lehtimäki N; Lintala M; Allahverdiyeva Y; Aro EM; Mulo P J Plant Physiol; 2010 Aug; 167(12):1018-22. PubMed ID: 20392519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]