BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 29670706)

  • 1. Conformationally Constrained Cinnolinone Nucleoside Analogues as Siderophore Biosynthesis Inhibitors for Tuberculosis.
    Dawadi S; Boshoff HIM; Park SW; Schnappinger D; Aldrich CC
    ACS Med Chem Lett; 2018 Apr; 9(4):386-391. PubMed ID: 29670706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation and conformational analysis of fluorinated nucleoside antibiotics targeting siderophore biosynthesis.
    Dawadi S; Viswanathan K; Boshoff HI; Barry CE; Aldrich CC
    J Org Chem; 2015 May; 80(10):4835-50. PubMed ID: 25916415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing and Validating Machine Learning Models for Mycobacterium tuberculosis Drug Discovery.
    Lane T; Russo DP; Zorn KM; Clark AM; Korotcov A; Tkachenko V; Reynolds RC; Perryman AL; Freundlich JS; Ekins S
    Mol Pharm; 2018 Oct; 15(10):4346-4360. PubMed ID: 29672063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rationally Designed Novel Phenyloxazoline Synthase Inhibitors: Chemical Synthesis and Biological Evaluation to Accelerate the Discovery of New Antimycobacterial Antibiotics.
    Shyam M; Bhattacharje G; Daniel C; Kumar A; Yadav P; Mukherjee P; Singh S; Das AK; Narender T; Singh A; Jayaprakash V; Bhakta S
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting
    Kumar G; Adhikrao PA
    RSC Med Chem; 2023 Oct; 14(10):1885-1913. PubMed ID: 37859726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyfluorinated salicylic acid analogs do not interfere with siderophore biosynthesis.
    Hegde P; Orimoloye MO; Sharma S; Engelhart CA; Schnappinger D; Aldrich CC
    Tuberculosis (Edinb); 2023 May; 140():102346. PubMed ID: 37119793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron Acquisition and Metabolism as a Promising Target for Antimicrobials (Bottlenecks and Opportunities): Where Do We Stand?
    Stelitano G; Cocorullo M; Mori M; Villa S; Meneghetti F; Chiarelli LR
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of an Isohexide Subunit Improves the Drug-like Properties of Bioactive Compounds.
    Sidduri A; Dresel MJ; Knapp S
    ACS Med Chem Lett; 2023 Feb; 14(2):176-182. PubMed ID: 36793427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic approaches to potent heterocyclic inhibitors of tuberculosis: A decade review.
    Dasmahapatra U; Chanda K
    Front Pharmacol; 2022; 13():1021216. PubMed ID: 36386156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analogues of Pyrimidine Nucleosides as Mycobacteria Growth Inhibitors.
    Alexandrova LA; Khandazhinskaya AL; Matyugina ES; Makarov DA; Kochetkov SN
    Microorganisms; 2022 Jun; 10(7):. PubMed ID: 35889017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational inhibitor design for Pseudomonas aeruginosa salicylate adenylation enzyme PchD.
    Shelton CL; Meneely KM; Ronnebaum TA; Chilton AS; Riley AP; Prisinzano TE; Lamb AL
    J Biol Inorg Chem; 2022 Sep; 27(6):541-551. PubMed ID: 35513576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in Key Drug Target Identification and New Drug Development for Tuberculosis.
    Mi J; Gong W; Wu X
    Biomed Res Int; 2022; 2022():5099312. PubMed ID: 35252448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2-((3,5-Dinitrobenzyl)thio)quinazolinones: Potent Antimycobacterial Agents Activated by Deazaflavin (F
    Jian Y; Forbes HE; Hulpia F; Risseeuw MDP; Caljon G; Munier-Lehmann H; Boshoff HIM; Van Calenbergh S
    J Med Chem; 2021 Jan; 64(1):440-457. PubMed ID: 33347317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endeavors towards transformation of M. tuberculosis thymidylate kinase (MtbTMPK) inhibitors into potential antimycobacterial agents.
    Jian Y; Merceron R; De Munck S; Forbes HE; Hulpia F; Risseeuw MDP; Van Hecke K; Savvides SN; Munier-Lehmann H; Boshoff HIM; Van Calenbergh S
    Eur J Med Chem; 2020 Nov; 206():112659. PubMed ID: 32823003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gram-scale preparation of the antibiotic lead compound salicyl-AMS, a potent inhibitor of bacterial salicylate adenylation enzymes.
    Kinarivala N; Standke LC; Guney T; Ji C; Noguchi N; Asano Y; Tan DS
    Methods Enzymol; 2020; 638():69-87. PubMed ID: 32416922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated Target-Based and Phenotypic Screening Approaches for the Identification of Anti-Tubercular Agents That Bind to the Mycobacterial Adenylating Enzyme MbtA.
    Ferguson L; Wells G; Bhakta S; Johnson J; Guzman J; Parish T; Prentice RA; Brucoli F
    ChemMedChem; 2019 Oct; 14(19):1735-1741. PubMed ID: 31454170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cinnoline Scaffold-A Molecular Heart of Medicinal Chemistry?
    Szumilak M; Stanczak A
    Molecules; 2019 Jun; 24(12):. PubMed ID: 31216762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting adenylate-forming enzymes with designed sulfonyladenosine inhibitors.
    Lux MC; Standke LC; Tan DS
    J Antibiot (Tokyo); 2019 Jun; 72(6):325-349. PubMed ID: 30982830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-Based Design, Synthesis, and Biological Evaluation of Non-Acyl Sulfamate Inhibitors of the Adenylate-Forming Enzyme MenE.
    Evans CE; Si Y; Matarlo JS; Yin Y; French JB; Tonge PJ; Tan DS
    Biochemistry; 2019 Apr; 58(14):1918-1930. PubMed ID: 30912442
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.