These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 29670946)

  • 1. Highly efficient electrochemical reforming of CH
    Lu J; Zhu C; Pan C; Lin W; Lemmon JP; Chen F; Li C; Xie K
    Sci Adv; 2018 Mar; 4(3):eaar5100. PubMed ID: 29670946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active Exsolved Metal-Oxide Interfaces in Porous Single-Crystalline Ceria Monoliths for Efficient and Durable CH
    Xiao Y; Xie K
    Angew Chem Int Ed Engl; 2022 Jan; 61(1):e202113079. PubMed ID: 34676642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing CO
    Ye L; Zhang M; Huang P; Guo G; Hong M; Li C; Irvine JT; Xie K
    Nat Commun; 2017 Mar; 8():14785. PubMed ID: 28300066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dry Reforming of CH
    Cheng F; Duan X; Xie K
    Angew Chem Int Ed Engl; 2021 Aug; 60(34):18792-18799. PubMed ID: 34101335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective Oxidative Coupling of Methane to Ethylene in a Solid Oxide Electrolyser Based on Porous Single-Crystalline CeO
    Ye L; Shang Z; Xie K
    Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202207211. PubMed ID: 35670138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methane oxidation at redox stable fuel cell electrode La0.75Sr0.25Cr0.5Mn0.5O(3-delta).
    Tao S; Irvine JT; Plint SM
    J Phys Chem B; 2006 Nov; 110(43):21771-6. PubMed ID: 17064138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical conversion of methane to ethylene in a solid oxide electrolyzer.
    Zhu C; Hou S; Hu X; Lu J; Chen F; Xie K
    Nat Commun; 2019 Mar; 10(1):1173. PubMed ID: 30862779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precise Modulation of Triple-Phase Boundaries towards a Highly Functional Exsolved Catalyst for Dry Reforming of Methane under a Dilution-Free System.
    Oh J; Joo S; Lim C; Kim HJ; Ciucci F; Wang JQ; Han JW; Kim G
    Angew Chem Int Ed Engl; 2022 Aug; 61(33):e202204990. PubMed ID: 35638132
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Shen Y; Liu T; Li R; Lv H; Ta N; Zhang X; Song Y; Liu Q; Feng W; Wang G; Bao X
    Natl Sci Rev; 2023 Sep; 10(9):nwad078. PubMed ID: 37565207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle.
    Buelens LC; Galvita VV; Poelman H; Detavernier C; Marin GB
    Science; 2016 Oct; 354(6311):449-452. PubMed ID: 27738013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Study on Dry Reforming of Biogas for Syngas Production over Ni-Based Catalysts.
    Chein R; Yang Z
    ACS Omega; 2019 Dec; 4(25):20911-20922. PubMed ID: 31867481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing Electrochemical CO
    Lin W; Su W; Li Y; Chiu TW; Singh M; Pan Z; Fan L
    Small; 2023 Oct; 19(41):e2303305. PubMed ID: 37309303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic modelling and optimization of oxy-reforming and oxy-steam reforming of biogas by RSM.
    Özcan MD; Özcan O; Akın AN
    Environ Technol; 2020 Jan; 41(1):14-28. PubMed ID: 31264942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perovskite Chromite With
    Li Z; Cui L; Luo J; Li J; Sun Y
    Front Chem; 2020; 8():595608. PubMed ID: 33598448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exsolution of Ni Nanoparticles from A-Site-Deficient Layered Double Perovskites for Dry Reforming of Methane and as an Anode Material for a Solid Oxide Fuel Cell.
    Managutti PB; Tymen S; Liu X; Hernandez O; Prestipino C; Le Gal La Salle A; Paul S; Jalowiecki-Duhamel L; Dorcet V; Billard A; Briois P; Bahout M
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):35719-35728. PubMed ID: 34288641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic performance of activated carbon supported cobalt catalyst for CO2 reforming of CH4.
    Zhang G; Su A; Du Y; Qu J; Xu Y
    J Colloid Interface Sci; 2014 Nov; 433():149-155. PubMed ID: 25127295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of A-Site Metal Exsolution from a Hydrated Perovskite Titanate for Combined Steam and CO
    Lee JG
    Inorg Chem; 2023 Apr; 62(14):5831-5835. PubMed ID: 36989537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conversion mechanism of thermal plasma-enhanced CH
    Zhou Y; Chu R; Fan L; Zhao J; Li W; Jiang X; Meng X; Li Y; Yu S; Wan Y
    Sci Total Environ; 2023 Mar; 866():161453. PubMed ID: 36626987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Achieving Highly Efficient Carbon Dioxide Electrolysis by
    Yang X; Sun W; Ma M; Xu C; Ren R; Qiao J; Wang Z; Li Z; Zhen S; Sun K
    ACS Appl Mater Interfaces; 2021 May; 13(17):20060-20069. PubMed ID: 33886263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring the Reaction Mechanism in Model Biogas Reforming by In Situ Transient and Steady-State DRIFTS Measurements.
    Bobadilla LF; Garcilaso V; Centeno MA; Odriozola JA
    ChemSusChem; 2017 Mar; 10(6):1193-1201. PubMed ID: 27910231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.