BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 29670999)

  • 1. Mechanisms involved in normal and pathological osteoclastogenesis.
    Park-Min KH
    Cell Mol Life Sci; 2018 Jul; 75(14):2519-2528. PubMed ID: 29670999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DOK3 Modulates Bone Remodeling by Negatively Regulating Osteoclastogenesis and Positively Regulating Osteoblastogenesis.
    Cai X; Xing J; Long CL; Peng Q; Humphrey MB
    J Bone Miner Res; 2017 Nov; 32(11):2207-2218. PubMed ID: 28650106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine-tuning osteoclastogenesis: An insight into the cellular and molecular regulation of osteoclastogenesis.
    Anwar A; Sapra L; Gupta N; Ojha RP; Verma B; Srivastava RK
    J Cell Physiol; 2023 Jul; 238(7):1431-1464. PubMed ID: 37183350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shikimic Acid Inhibits Osteoclastogenesis in Vivo and in Vitro by Blocking RANK/TRAF6 Association and Suppressing NF-κB and MAPK Signaling Pathways.
    Chen X; Li X; Zhai X; Zhi X; Cao L; Qin L; Su J
    Cell Physiol Biochem; 2018; 51(6):2858-2871. PubMed ID: 30562759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RANKL-RANK signaling in osteoclastogenesis and bone disease.
    Wada T; Nakashima T; Hiroshi N; Penninger JM
    Trends Mol Med; 2006 Jan; 12(1):17-25. PubMed ID: 16356770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse.
    Cao JJ; Wronski TJ; Iwaniec U; Phleger L; Kurimoto P; Boudignon B; Halloran BP
    J Bone Miner Res; 2005 Sep; 20(9):1659-68. PubMed ID: 16059637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caffeic acid 3,4-dihydroxy-phenethyl ester suppresses receptor activator of NF-κB ligand–induced osteoclastogenesis and prevents ovariectomy-induced bone loss through inhibition of mitogen-activated protein kinase/activator protein 1 and Ca2+–nuclear factor of activated T-cells cytoplasmic 1 signaling pathways.
    Wu X; Li Z; Yang Z; Zheng C; Jing J; Chen Y; Ye X; Lian X; Qiu W; Yang F; Tang J; Xiao J; Liu M; Luo J
    J Bone Miner Res; 2012 Jun; 27(6):1298-1308. PubMed ID: 22337253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteocyte-Related Cytokines Regulate Osteoclast Formation and Bone Resorption.
    Kitaura H; Marahleh A; Ohori F; Noguchi T; Shen WR; Qi J; Nara Y; Pramusita A; Kinjo R; Mizoguchi I
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32708317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of TAK1 in RANKL-Induced Osteoclastogenesis.
    Jianwei W; Ye T; Hongwei W; Dachuan L; Fei Z; Jianyuan J; Hongli W
    Calcif Tissue Int; 2022 Jul; 111(1):1-12. PubMed ID: 35286417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of Wnt signals in bone resorption during physiological and pathological states.
    Maeda K; Takahashi N; Kobayashi Y
    J Mol Med (Berl); 2013 Jan; 91(1):15-23. PubMed ID: 23111637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: receptor activator of NF-kappa B ligand.
    Udagawa N; Takahashi N; Jimi E; Matsuzaki K; Tsurukai T; Itoh K; Nakagawa N; Yasuda H; Goto M; Tsuda E; Higashio K; Gillespie MT; Martin TJ; Suda T
    Bone; 1999 Nov; 25(5):517-23. PubMed ID: 10574571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone Remodeling and the Role of TRAF3 in Osteoclastic Bone Resorption.
    Boyce BF; Li J; Xing L; Yao Z
    Front Immunol; 2018; 9():2263. PubMed ID: 30323820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conjugated linoleic acid inhibits osteoclast differentiation of RAW264.7 cells by modulating RANKL signaling.
    Rahman MM; Bhattacharya A; Fernandes G
    J Lipid Res; 2006 Aug; 47(8):1739-48. PubMed ID: 16702601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of IGF-I signaling in regulating osteoclastogenesis.
    Wang Y; Nishida S; Elalieh HZ; Long RK; Halloran BP; Bikle DD
    J Bone Miner Res; 2006 Sep; 21(9):1350-8. PubMed ID: 16939393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear Factor-Kappa B Regulation of Osteoclastogenesis and Osteoblastogenesis.
    Boyce BF; Li J; Yao Z; Xing L
    Endocrinol Metab (Seoul); 2023 Oct; 38(5):504-521. PubMed ID: 37749800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The osteoclast, bone remodelling and treatment of metabolic bone disease.
    Boyce BF; Rosenberg E; de Papp AE; Duong LT
    Eur J Clin Invest; 2012 Dec; 42(12):1332-41. PubMed ID: 22998735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maslinic acid suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss by regulating RANKL-mediated NF-κB and MAPK signaling pathways.
    Li C; Yang Z; Li Z; Ma Y; Zhang L; Zheng C; Qiu W; Wu X; Wang X; Li H; Tang J; Qian M; Li D; Wang P; Luo J; Liu M
    J Bone Miner Res; 2011 Mar; 26(3):644-56. PubMed ID: 20814972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Garcinol suppresses RANKL-induced osteoclastogenesis and its underlying mechanism.
    Jia Y; Jiang J; Lu X; Zhang T; Zhao K; Han W; Yang W; Qian Y
    J Cell Physiol; 2019 May; 234(5):7498-7509. PubMed ID: 30471112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TGFβ1 Regulates Human RANKL-Induced Osteoclastogenesis via Suppression of NFATc1 Expression.
    Tokunaga T; Mokuda S; Kohno H; Yukawa K; Kuranobu T; Oi K; Yoshida Y; Hirata S; Sugiyama E
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31991837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Rhein Derivative Modulates Bone Formation and Resorption and Ameliorates Estrogen-Dependent Bone Loss.
    Jiang M; Wang T; Yan X; Liu Z; Yan Y; Yang K; Qi J; Zhou H; Qian N; Zhou Q; Chen B; Xu X; Xi X; Yang C; Deng L
    J Bone Miner Res; 2019 Feb; 34(2):361-374. PubMed ID: 30320929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.