These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 29671311)

  • 1. Measurements of Parameters Controlling the Emissions of Organophosphate Flame Retardants in Indoor Environments.
    Liang Y; Liu X; Allen MR
    Environ Sci Technol; 2018 May; 52(10):5821-5829. PubMed ID: 29671311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption and migration of organophosphate flame retardants between sources and settled dust.
    Liu X; Folk E
    Chemosphere; 2021 Sep; 278():130415. PubMed ID: 33839398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of temperature on the emissions of organophosphate ester flame retardants from polyisocyanurate foam: Measurement and modeling.
    Liang Y; Liu X; Allen MR
    Chemosphere; 2019 Oct; 233():347-354. PubMed ID: 31176897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring and modeling surface sorption dynamics of organophosphate flame retardants on impervious surfaces.
    Liang Y; Liu X; Allen MR
    Chemosphere; 2018 Feb; 193():754-762. PubMed ID: 29175403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of gas-phase concentrations of organophosphate flame retardants at the material surface using a midget emission cell coupled to solid-phase microextraction.
    Plaisance H; Ghislain M; Desauziers V
    Anal Chim Acta; 2021 Nov; 1186():339100. PubMed ID: 34756255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organophosphate flame retardants (OPFRs) in indoor and outdoor air in the Rhine/Main area, Germany: comparison of concentrations and distribution profiles in different microenvironments.
    Zhou L; Hiltscher M; Gruber D; Püttmann W
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):10992-11005. PubMed ID: 27230144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple method to measure the gas-phase SVOC concentration adjacent to a material surface.
    Wu Y; Xie M; Cox SS; Marr LC; Little JC
    Indoor Air; 2016 Dec; 26(6):903-912. PubMed ID: 26609785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indoor organophosphate and polybrominated flame retardants in Tokyo.
    Saito I; Onuki A; Seto H
    Indoor Air; 2007 Feb; 17(1):28-36. PubMed ID: 17257150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved method for measuring and characterizing phthalate emissions from building materials and its application to exposure assessment.
    Liang Y; Xu Y
    Environ Sci Technol; 2014 Apr; 48(8):4475-84. PubMed ID: 24654650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Air sampling of flame retardants based on the use of mixed-bed sorption tubes--a validation study.
    Lazarov B; Swinnen R; Spruyt M; Maes F; Van Campenhout K; Goelen E; Covaci A; Stranger M
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):18221-9. PubMed ID: 26194239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distributions of organophosphate flame retardants (OPFRs) in three dust size fractions from homes and building material markets.
    Zhou L; Püttmann W
    Environ Pollut; 2019 Feb; 245():343-352. PubMed ID: 30448504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the emissions of VOCs/SVOCs in source and sink materials: Development of analytical model and determination of the key parameters.
    Zhang X; Wang H; Xu B; Wang H; Wang Y; Yang T; Tan Y; Xiong J; Liu X
    Environ Int; 2022 Feb; 160():107064. PubMed ID: 34968991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organophosphate Flame Retardants in House Dust from South China and Related Human Exposure Risks.
    Tan H; Peng C; Guo Y; Wang X; Wu Y; Chen D
    Bull Environ Contam Toxicol; 2017 Sep; 99(3):344-349. PubMed ID: 28573493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal variations of PM
    Wang D; Wang P; Wang Y; Zhang W; Zhu C; Sun H; Matsiko J; Zhu Y; Li Y; Meng W; Zhang Q; Jiang G
    Sci Total Environ; 2019 May; 666():226-234. PubMed ID: 30798233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exposure to brominated and organophosphate ester flame retardants in U.S. childcare environments: Effect of removal of flame-retarded nap mats on indoor levels.
    Stubbings WA; Schreder ED; Thomas MB; Romanak K; Venier M; Salamova A
    Environ Pollut; 2018 Jul; 238():1056-1068. PubMed ID: 29703676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organophosphate flame retardants in the indoor and outdoor dust and gas-phase of Alexandria, Egypt.
    Khairy MA; Lohmann R
    Chemosphere; 2019 Apr; 220():275-285. PubMed ID: 30590294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle size-specific distributions and preliminary exposure assessments of organophosphate flame retardants in office air particulate matter.
    Yang F; Ding J; Huang W; Xie W; Liu W
    Environ Sci Technol; 2014; 48(1):63-70. PubMed ID: 24308350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust.
    Van den Eede N; Dirtu AC; Neels H; Covaci A
    Environ Int; 2011 Feb; 37(2):454-61. PubMed ID: 21176966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationships between estimated flame retardant emissions and levels in indoor air and house dust.
    Liagkouridis I; Cequier E; Lazarov B; Palm Cousins A; Thomsen C; Stranger M; Cousins IT
    Indoor Air; 2017 May; 27(3):650-657. PubMed ID: 27614110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occurrence of organophosphorus flame retardants in indoor dust in multiple microenvironments of southern China and implications for human exposure.
    He CT; Zheng J; Qiao L; Chen SJ; Yang JZ; Yuan JG; Yang ZY; Mai BX
    Chemosphere; 2015 Aug; 133():47-52. PubMed ID: 25898308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.