These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 29671459)

  • 1. Multiroom-structured multicomponent metal selenide-graphitic carbon-carbon nanotube hybrid microspheres as efficient anode materials for sodium-ion batteries.
    Park GD; Kang YC
    Nanoscale; 2018 May; 10(17):8125-8132. PubMed ID: 29671459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fullerene-like MoSe2 nanoparticles-embedded CNT balls with excellent structural stability for highly reversible sodium-ion storage.
    Choi SH; Kang YC
    Nanoscale; 2016 Feb; 8(7):4209-16. PubMed ID: 26830784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hollow Cobalt Selenide Microspheres: Synthesis and Application as Anode Materials for Na-Ion Batteries.
    Ko YN; Choi SH; Kang YC
    ACS Appl Mater Interfaces; 2016 Mar; 8(10):6449-56. PubMed ID: 26918934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perforated Metal Oxide-Carbon Nanotube Composite Microspheres with Enhanced Lithium-Ion Storage Properties.
    Choi SH; Lee JH; Kang YC
    ACS Nano; 2015 Oct; 9(10):10173-85. PubMed ID: 26355350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yolk-shell-structured microspheres composed of N-doped-carbon-coated NiMoO
    Park GD; Hong JH; Lee JK; Kang YC
    Nanoscale; 2019 Jan; 11(2):631-638. PubMed ID: 30564807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon/two-dimensional MoTe
    Cho JS; Ju HS; Lee JK; Kang YC
    Nanoscale; 2017 Feb; 9(5):1942-1950. PubMed ID: 28098302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MOF-Templated N-Doped Carbon-Coated CoSe
    Park SK; Kang YC
    ACS Appl Mater Interfaces; 2018 May; 10(20):17203-17213. PubMed ID: 29717862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergetic Effect of Yolk-Shell Structure and Uniform Mixing of SnS-MoS₂ Nanocrystals for Improved Na-Ion Storage Capabilities.
    Choi SH; Kang YC
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24694-702. PubMed ID: 26484615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational Design and Synthesis of Extremely Efficient Macroporous CoSe
    Kim JK; Park GD; Kim JH; Park SK; Kang YC
    Small; 2017 Jul; 13(27):. PubMed ID: 28558155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Salt-Templated Strategy toward Hollow Iron Selenides-Graphitic Carbon Composite Microspheres with Interconnected Multicavities as High-Performance Anode Materials for Sodium-Ion Batteries.
    Choi JH; Park SK; Kang YC
    Small; 2019 Jan; 15(2):e1803043. PubMed ID: 30484957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Li-ion storage performance of novel tube-in-tube structured nanofibers with hollow metal oxide nanospheres covered with a graphitic carbon layer.
    Park GD; Kang YC
    Nanoscale; 2020 Apr; 12(15):8404-8414. PubMed ID: 32239057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of Uniquely Structured Yolk-Shell Metal Oxide Microspheres Filled with Nitrogen-Doped Graphitic Carbon with Excellent Li-Ion Storage Performance.
    Kim JH; Kang YC
    Small; 2017 Oct; 13(39):. PubMed ID: 28834282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First Introduction of NiSe2 to Anode Material for Sodium-Ion Batteries: A Hybrid of Graphene-Wrapped NiSe2/C Porous Nanofiber.
    Cho JS; Lee SY; Kang YC
    Sci Rep; 2016 Mar; 6():23338. PubMed ID: 26997350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ni
    Li Q; Zhu G; Zhao Y; Pei K; Che R
    Small; 2019 Apr; 15(15):e1900069. PubMed ID: 30859742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron Telluride-Decorated Reduced Graphene Oxide Hybrid Microspheres as Anode Materials with Improved Na-Ion Storage Properties.
    Cho JS; Lee SY; Lee JK; Kang YC
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21343-9. PubMed ID: 27488678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual Role of Multiroom-Structured Sn-Doped NiO Microspheres for Ultrasensitive and Highly Selective Detection of Xylene.
    Kim BY; Yoon JW; Kim JK; Kang YC; Lee JH
    ACS Appl Mater Interfaces; 2018 May; 10(19):16605-16612. PubMed ID: 29701063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphitic Carbon-Coated FeSe2 Hollow Nanosphere-Decorated Reduced Graphene Oxide Hybrid Nanofibers as an Efficient Anode Material for Sodium Ion Batteries.
    Cho JS; Lee JK; Kang YC
    Sci Rep; 2016 Apr; 6():23699. PubMed ID: 27033096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional porous microspheres comprising hollow Fe
    Park SK; Park GD; Kang YC
    Nanoscale; 2018 Jun; 10(23):11150-11157. PubMed ID: 29873376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-Pot Synthesis of CoSex -rGO Composite Powders by Spray Pyrolysis and Their Application as Anode Material for Sodium-Ion Batteries.
    Park GD; Kang YC
    Chemistry; 2016 Mar; 22(12):4140-6. PubMed ID: 26864320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large Scale Process for Low Crystalline MoO₃-Carbon Composite Microspheres Prepared by One-Step Spray Pyrolysis for Anodes in Lithium-Ion Batteries.
    Cho JS
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30987189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.