These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29671802)

  • 1. Computational Prediction and Analysis of Associations between Small Molecules and Binding-Associated S-Nitrosylation Sites.
    Huang G; Li J; Zhao C
    Molecules; 2018 Apr; 23(4):. PubMed ID: 29671802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient support vector machine approach for identifying protein S-nitrosylation sites.
    Li YX; Shao YH; Jing L; Deng NY
    Protein Pept Lett; 2011 Jun; 18(6):573-87. PubMed ID: 21271979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition.
    Xu Y; Ding J; Wu LY; Chou KC
    PLoS One; 2013; 8(2):e55844. PubMed ID: 23409062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GPS-SNO: computational prediction of protein S-nitrosylation sites with a modified GPS algorithm.
    Xue Y; Liu Z; Gao X; Jin C; Wen L; Yao X; Ren J
    PLoS One; 2010 Jun; 5(6):e11290. PubMed ID: 20585580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of S-nitrosylation sites by integrating support vector machines and random forest.
    Hasan MM; Manavalan B; Khatun MS; Kurata H
    Mol Omics; 2019 Dec; 15(6):451-458. PubMed ID: 31710075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predict and analyze S-nitrosylation modification sites with the mRMR and IFS approaches.
    Li BQ; Hu LL; Niu S; Cai YD; Chou KC
    J Proteomics; 2012 Feb; 75(5):1654-65. PubMed ID: 22178444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures.
    Hao G; Derakhshan B; Shi L; Campagne F; Gross SS
    Proc Natl Acad Sci U S A; 2006 Jan; 103(4):1012-7. PubMed ID: 16418269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences.
    Cai B; Jiang X
    BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening systems for the identification of S-nitrosylated proteins.
    Uehara T; Nishiya T
    Nitric Oxide; 2011 Aug; 25(2):108-11. PubMed ID: 21111056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-based prediction of protein- peptide binding regions using Random Forest.
    Taherzadeh G; Zhou Y; Liew AW; Yang Y
    Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of coenzyme-binding proteins with machine learning algorithms.
    Liu Y; Munteanu CR; Kong Z; Ran T; Sahagún-Ruiz A; He Z; Zhou C; Tan Z
    Comput Biol Chem; 2019 Apr; 79():185-192. PubMed ID: 30851647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of selective estrogen receptor beta agonist using open data and machine learning approach.
    Niu AQ; Xie LJ; Wang H; Zhu B; Wang SQ
    Drug Des Devel Ther; 2016; 10():2323-31. PubMed ID: 27486309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using information from historical high-throughput screens to predict active compounds.
    Riniker S; Wang Y; Jenkins JL; Landrum GA
    J Chem Inf Model; 2014 Jul; 54(7):1880-91. PubMed ID: 24933016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Protein-Ligand Binding Sites by Sequence Information and Ensemble Classifier.
    Ding Y; Tang J; Guo F
    J Chem Inf Model; 2017 Dec; 57(12):3149-3161. PubMed ID: 29125297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of protein methylation sites using conditional random field.
    Xu Y; Ding J; Huang Q; Deng NY
    Protein Pept Lett; 2013 Jan; 20(1):71-7. PubMed ID: 22789108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique.
    Zhao X; Ning Q; Chai H; Ma Z
    J Theor Biol; 2015 Jun; 374():60-5. PubMed ID: 25843215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Prediction of DrugTarget Interactions Using Chemical, Biological, and Network Features.
    Cao DS; Zhang LX; Tan GS; Xiang Z; Zeng WB; Xu QS; Chen AF
    Mol Inform; 2014 Oct; 33(10):669-81. PubMed ID: 27485302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Random Forest Model for Predicting Allosteric and Functional Sites on Proteins.
    Chen AS; Westwood NJ; Brear P; Rogers GW; Mavridis L; Mitchell JB
    Mol Inform; 2016 Apr; 35(3-4):125-35. PubMed ID: 27491922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison and optimization of machine learning methods for automated classification of circulating tumor cells.
    Lannin TB; Thege FI; Kirby BJ
    Cytometry A; 2016 Oct; 89(10):922-931. PubMed ID: 27754580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.