These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 29672020)
1. Environmental Decontamination of a Chemical Warfare Simulant Utilizing a Membrane Vesicle-Encapsulated Phosphotriesterase. Alves NJ; Moore M; Johnson BJ; Dean SN; Turner KB; Medintz IL; Walper SA ACS Appl Mater Interfaces; 2018 May; 10(18):15712-15719. PubMed ID: 29672020 [TBL] [Abstract][Full Text] [Related]
2. The evolution of phosphotriesterase for decontamination and detoxification of organophosphorus chemical warfare agents. Bigley AN; Raushel FM Chem Biol Interact; 2019 Aug; 308():80-88. PubMed ID: 31100274 [TBL] [Abstract][Full Text] [Related]
3. Detoxification of organophosphate nerve agents by bacterial phosphotriesterase. Ghanem E; Raushel FM Toxicol Appl Pharmacol; 2005 Sep; 207(2 Suppl):459-70. PubMed ID: 15982683 [TBL] [Abstract][Full Text] [Related]
4. Enzymatic Bioremediation of Organophosphate Compounds-Progress and Remaining Challenges. Thakur M; Medintz IL; Walper SA Front Bioeng Biotechnol; 2019; 7():289. PubMed ID: 31781549 [TBL] [Abstract][Full Text] [Related]
5. Biomaterials for mediation of chemical and biological warfare agents. Russell AJ; Berberich JA; Drevon GF; Koepsel RR Annu Rev Biomed Eng; 2003; 5():1-27. PubMed ID: 12704086 [TBL] [Abstract][Full Text] [Related]
6. Innovative Biocatalysts as Tools to Detect and Inactivate Nerve Agents. Porzio E; Bettazzi F; Mandrich L; Del Giudice I; Restaino OF; Laschi S; Febbraio F; De Luca V; Borzacchiello MG; Carusone TM; Worek F; Pisanti A; Porcaro P; Schiraldi C; De Rosa M; Palchetti I; Manco G Sci Rep; 2018 Sep; 8(1):13773. PubMed ID: 30214052 [TBL] [Abstract][Full Text] [Related]
7. Organophosphate degrading microorganisms and enzymes as biocatalysts in environmental and personal decontamination applications. Yair S; Ofer B; Arik E; Shai S; Yossi R; Tzvika D; Amir K Crit Rev Biotechnol; 2008; 28(4):265-75. PubMed ID: 19051105 [TBL] [Abstract][Full Text] [Related]
8. Enhanced degradation of chemical warfare agents through molecular engineering of the phosphotriesterase active site. Hill CM; Li WS; Thoden JB; Holden HM; Raushel FM J Am Chem Soc; 2003 Jul; 125(30):8990-1. PubMed ID: 15369336 [TBL] [Abstract][Full Text] [Related]
9. QM/MM and MM MD simulations on decontamination of the V-type nerve agent VX by phosphotriesterase: toward a comprehensive understanding of steroselectivity and activity. Fan F; Zheng Y; Fu Y; Zhang Y; Zheng H; Lyu C; Chen L; Huang J; Cao Z Phys Chem Chem Phys; 2022 May; 24(18):10933-10943. PubMed ID: 35466335 [TBL] [Abstract][Full Text] [Related]
10. [Decontamination of organophosphorus compounds: Towards new alternatives]. Poirier L; Jacquet P; Elias M; Daudé D; Chabrière E Ann Pharm Fr; 2017 May; 75(3):209-226. PubMed ID: 28267954 [TBL] [Abstract][Full Text] [Related]
11. Growth of Escherichia coli coexpressing phosphotriesterase and glycerophosphodiester phosphodiesterase, using paraoxon as the sole phosphorus source. McLoughlin SY; Jackson C; Liu JW; Ollis DL Appl Environ Microbiol; 2004 Jan; 70(1):404-12. PubMed ID: 14711669 [TBL] [Abstract][Full Text] [Related]
12. Packaging of Diisopropyl Fluorophosphatase (DFPase) in Bacterial Outer Membrane Vesicles Protects Its Activity at Extreme Temperature. Thakur M; Dean SN; Moore M; Spangler JR; Johnson BJ; Medintz IL; Walper SA ACS Biomater Sci Eng; 2022 Feb; 8(2):493-501. PubMed ID: 35030308 [TBL] [Abstract][Full Text] [Related]
13. Quantum dot display enhances activity of a phosphotriesterase trimer. Breger JC; Walper SA; Oh E; Susumu K; Stewart MH; Deschamps JR; Medintz IL Chem Commun (Camb); 2015 Apr; 51(29):6403-6. PubMed ID: 25764989 [TBL] [Abstract][Full Text] [Related]
14. Protecting enzymatic function through directed packaging into bacterial outer membrane vesicles. Alves NJ; Turner KB; Medintz IL; Walper SA Sci Rep; 2016 Apr; 6():24866. PubMed ID: 27117743 [TBL] [Abstract][Full Text] [Related]
15. Iron-montmorillonite clays as active sorbents for the decontamination of hazardous chemical warfare agents. Carniato F; Bisio C; Evangelisti C; Psaro R; Dal Santo V; Costenaro D; Marchese L; Guidotti M Dalton Trans; 2018 Feb; 47(9):2939-2948. PubMed ID: 29441378 [TBL] [Abstract][Full Text] [Related]
16. Metal oxide nanoparticles for the decontamination of toxic chemical and biological compounds. Denet E; Espina-Benitez MB; Pitault I; Pollet T; Blaha D; Bolzinger MA; Rodriguez-Nava V; Briançon S Int J Pharm; 2020 Jun; 583():119373. PubMed ID: 32339629 [TBL] [Abstract][Full Text] [Related]
17. New and highly active microbial phosphotriesterase sources. Santillan JY; Dettorre LA; Lewkowicz ES; Iribarren AM FEMS Microbiol Lett; 2016 Dec; 363(24):. PubMed ID: 27915249 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of Malathion, DIMP, and Strawberry Furanone as CWA Simulants for Consideration in Field-Level Interior Building Remediation Exercises. Oudejans L; Wyrzykowska-Ceradini B; Morris E; Jackson S; Touati A; Sawyer J; Mikelonis A; Serre S J Chem Health Saf; 2023 Jun; 30():270-278. PubMed ID: 38269393 [TBL] [Abstract][Full Text] [Related]
19. Textile/metal-organic-framework composites as self-detoxifying filters for chemical-warfare agents. López-Maya E; Montoro C; Rodríguez-Albelo LM; Aznar Cervantes SD; Lozano-Pérez AA; Cenís JL; Barea E; Navarro JA Angew Chem Int Ed Engl; 2015 Jun; 54(23):6790-4. PubMed ID: 25951010 [TBL] [Abstract][Full Text] [Related]
20. Fate of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) on soil following accelerant-based fire and liquid decontamination. Gravett MR; Hopkins FB; Self AJ; Webb AJ; Timperley CM; Riches JR Anal Bioanal Chem; 2014 Aug; 406(21):5121-35. PubMed ID: 24972874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]