These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 29672020)
21. Bionanoconjugate-based composites for decontamination of nerve agents. Borkar IV; Dinu CZ; Zhu G; Kane RS; Dordick JS Biotechnol Prog; 2010; 26(6):1622-8. PubMed ID: 20859933 [TBL] [Abstract][Full Text] [Related]
22. Update on biochemical properties of recombinant Pseudomonas diminuta phosphotriesterase. Carletti E; Jacquamet L; Loiodice M; Rochu D; Masson P; Nachon F J Enzyme Inhib Med Chem; 2009 Aug; 24(4):1045-55. PubMed ID: 19548794 [TBL] [Abstract][Full Text] [Related]
23. Functionalized reactive polymers for the removal of chemical warfare agents: A review. Snider VG; Hill CL J Hazard Mater; 2023 Jan; 442():130015. PubMed ID: 36166906 [TBL] [Abstract][Full Text] [Related]
24. Reducing health & environmental impacts of chemical warfare agents: Computational chemistry contributions. Melagraki G Chemosphere; 2022 Feb; 288(Pt 2):132564. PubMed ID: 34673043 [TBL] [Abstract][Full Text] [Related]
25. Metal-Organic Framework- and Polyoxometalate-Based Sorbents for the Uptake and Destruction of Chemical Warfare Agents. Grissom TG; Plonka AM; Sharp CH; Ebrahim AM; Tian Y; Collins-Wildman DL; Kaledin AL; Siegal HJ; Troya D; Hill CL; Frenkel AI; Musaev DG; Gordon WO; Karwacki CJ; Mitchell MB; Morris JR ACS Appl Mater Interfaces; 2020 Apr; 12(13):14641-14661. PubMed ID: 31994872 [TBL] [Abstract][Full Text] [Related]
26. A new phosphotriesterase from Sulfolobus acidocaldarius and its comparison with the homologue from Sulfolobus solfataricus. Porzio E; Merone L; Mandrich L; Rossi M; Manco G Biochimie; 2007 May; 89(5):625-36. PubMed ID: 17337320 [TBL] [Abstract][Full Text] [Related]
27. Binding affinity and decontamination of dermal decontamination gel to model chemical warfare agent simulants. Cao Y; Elmahdy A; Zhu H; Hui X; Maibach H J Appl Toxicol; 2018 May; 38(5):724-733. PubMed ID: 29315700 [TBL] [Abstract][Full Text] [Related]
28. Degradation of pesticides with RSDL Fentabil M; Gebremedhin M; Purdon JG; Cochrane L; Goldman VS Toxicol Lett; 2018 Sep; 293():241-248. PubMed ID: 29128639 [TBL] [Abstract][Full Text] [Related]
29. Reactive skin decontamination lotion (RSDL) for the decontamination of chemical warfare agent (CWA) dermal exposure. Schwartz MD; Hurst CG; Kirk MA; Reedy SJ; Braue EH Curr Pharm Biotechnol; 2012 Aug; 13(10):1971-9. PubMed ID: 22352732 [TBL] [Abstract][Full Text] [Related]
30. Physicochemical characterization of stealth liposomes encapsulating an organophosphate hydrolyzing enzyme. Budai M; Chapela P; Gróf P; Zimmer A; Wales ME; Wild JR; Klebovich I; Petrikovics I; Szilasi M J Liposome Res; 2009; 19(2):163-8. PubMed ID: 19235545 [TBL] [Abstract][Full Text] [Related]
31. Studies on residue-free decontaminants for chemical warfare agents. Wagner GW Environ Sci Technol; 2015 Mar; 49(6):3755-60. PubMed ID: 25710477 [TBL] [Abstract][Full Text] [Related]
32. Effects of soap-water wash on human epidermal penetration. Zhu H; Jung EC; Phuong C; Hui X; Maibach H J Appl Toxicol; 2016 Aug; 36(8):997-1002. PubMed ID: 26568168 [TBL] [Abstract][Full Text] [Related]
33. Physics-based agent to simulant correlations for vapor phase mass transport. Willis MP; Varady MJ; Pearl TP; Fouse JC; Riley PC; Mantooth BA; Lalain TA J Hazard Mater; 2013 Dec; 263 Pt 2():479-85. PubMed ID: 24225584 [TBL] [Abstract][Full Text] [Related]
34. Variants of Phosphotriesterase for the Enhanced Detoxification of the Chemical Warfare Agent VR. Bigley AN; Mabanglo MF; Harvey SP; Raushel FM Biochemistry; 2015 Sep; 54(35):5502-12. PubMed ID: 26274608 [TBL] [Abstract][Full Text] [Related]
35. Efficacy of liquid and foam decontamination technologies for chemical warfare agents on indoor surfaces. Love AH; Bailey CG; Hanna ML; Hok S; Vu AK; Reutter DJ; Raber E J Hazard Mater; 2011 Nov; 196():115-22. PubMed ID: 21944706 [TBL] [Abstract][Full Text] [Related]
36. Coupling Peptide-Based Encapsulation of Enzymes with Bacteria for Paraoxon Bioremediation. Dan Y; Gurevich D; Gershoni O; Netti F; Adler-Abramovich L; Afriat-Jurnou L ACS Appl Mater Interfaces; 2024 Jul; 16(27):35155-35165. PubMed ID: 38920304 [TBL] [Abstract][Full Text] [Related]
37. Chemical warfare agent simulants for human volunteer trials of emergency decontamination: A systematic review. James T; Wyke S; Marczylo T; Collins S; Gaulton T; Foxall K; Amlôt R; Duarte-Davidson R J Appl Toxicol; 2018 Jan; 38(1):113-121. PubMed ID: 28990191 [TBL] [Abstract][Full Text] [Related]
38. Solid-Phase Detoxification of Chemical Warfare Agents using Zirconium-Based Metal Organic Frameworks and the Moisture Effects: Analyze via Digestion. Wang H; Mahle JJ; Tovar TM; Peterson GW; Hall MG; DeCoste JB; Buchanan JH; Karwacki CJ ACS Appl Mater Interfaces; 2019 Jun; 11(23):21109-21116. PubMed ID: 31117457 [TBL] [Abstract][Full Text] [Related]
39. Efficacy of water-only or soap and water skin decontamination of chemical warfare agents or simulants using in vitro human models: A systematic review. Chiang C; Kashetsky N; Feschuk A; Burli A; Law RM; Maibach HI J Appl Toxicol; 2022 Jun; 42(6):930-941. PubMed ID: 34665468 [TBL] [Abstract][Full Text] [Related]
40. Current and emerging strategies for organophosphate decontamination: special focus on hyperstable enzymes. Jacquet P; Daudé D; Bzdrenga J; Masson P; Elias M; Chabrière E Environ Sci Pollut Res Int; 2016 May; 23(9):8200-18. PubMed ID: 26832878 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]