These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 29672022)
1. The Roles of Morphology on the Relaxation Rates of Magnetic Nanoparticles. Yang L; Wang Z; Ma L; Li A; Xin J; Wei R; Lin H; Wang R; Chen Z; Gao J ACS Nano; 2018 May; 12(5):4605-4614. PubMed ID: 29672022 [TBL] [Abstract][Full Text] [Related]
2. Engineering manganese ferrite shell on iron oxide nanoparticles for enhanced T Li M; Bao J; Zeng J; Huo L; Shan X; Cheng X; Qiu D; Miao W; Zhu X; Huang G; Ni K; Zhao Z J Colloid Interface Sci; 2022 Nov; 626():364-373. PubMed ID: 35797871 [TBL] [Abstract][Full Text] [Related]
3. Surface Design of Eu-Doped Iron Oxide Nanoparticles for Tuning the Magnetic Relaxivity. Park JC; Lee GT; Kim HK; Sung B; Lee Y; Kim M; Chang Y; Seo JH ACS Appl Mater Interfaces; 2018 Aug; 10(30):25080-25089. PubMed ID: 29989402 [TBL] [Abstract][Full Text] [Related]
4. Tunable T1 and T2 contrast abilities of manganese-engineered iron oxide nanoparticles through size control. Huang G; Li H; Chen J; Zhao Z; Yang L; Chi X; Chen Z; Wang X; Gao J Nanoscale; 2014 Sep; 6(17):10404-12. PubMed ID: 25079966 [TBL] [Abstract][Full Text] [Related]
5. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Zhang W; Liu L; Chen H; Hu K; Delahunty I; Gao S; Xie J Theranostics; 2018; 8(9):2521-2548. PubMed ID: 29721097 [TBL] [Abstract][Full Text] [Related]
6. Scaling Laws at the Nano Size: The Effect of Particle Size and Shape on the Magnetism and Relaxivity of Iron Oxide Nanoparticle Contrast Agents. Smolensky ED; Park HY; Zhou Y; Rolla GA; Marjańska M; Botta M; Pierre VC J Mater Chem B; 2013 Jun; 1(22):2818-2828. PubMed ID: 23819021 [TBL] [Abstract][Full Text] [Related]
7. CXC Chemokine Receptor 4 Antagonist Functionalized Renal Clearable Manganese-Doped Iron Oxide Nanoparticles for Active-Tumor-Targeting Magnetic Resonance Imaging-Guided Bio-Photothermal Therapy. Fu Y; Li X; Chen H; Wang Z; Yang W; Zhang H ACS Appl Bio Mater; 2019 Aug; 2(8):3613-3621. PubMed ID: 35030748 [TBL] [Abstract][Full Text] [Related]
8. Increased transverse relaxivity in ultrasmall superparamagnetic iron oxide nanoparticles used as MRI contrast agent for biomedical imaging. Mishra SK; Kumar BS; Khushu S; Tripathi RP; Gangenahalli G Contrast Media Mol Imaging; 2016 Sep; 11(5):350-361. PubMed ID: 27230705 [TBL] [Abstract][Full Text] [Related]
9. New Class of Efficient T Yue H; Park JA; Ho SL; Ahmad MY; Cha H; Liu S; Tegafaw T; Marasini S; Ghazanfari A; Kim S; Chae KS; Chang Y; Lee GH Pharmaceuticals (Basel); 2020 Oct; 13(10):. PubMed ID: 33076332 [TBL] [Abstract][Full Text] [Related]
10. Surface manganese substitution in magnetite nanocrystals enhances T Zhao Z; Sun C; Bao J; Yang L; Wei R; Cheng J; Lin H; Gao J J Mater Chem B; 2018 Jan; 6(3):401-413. PubMed ID: 32254520 [TBL] [Abstract][Full Text] [Related]
11. Citrate coated iron oxide nanoparticles with enhanced relaxivity for in vivo magnetic resonance imaging of liver fibrosis. Saraswathy A; Nazeer SS; Jeevan M; Nimi N; Arumugam S; Harikrishnan VS; Varma PR; Jayasree RS Colloids Surf B Biointerfaces; 2014 May; 117():216-24. PubMed ID: 24646453 [TBL] [Abstract][Full Text] [Related]
12. Polyethylenimine-Coated Ultrasmall Holmium Oxide Nanoparticles: Synthesis, Characterization, Cytotoxicities, and Water Proton Spin Relaxivities. Liu S; Yue H; Ho SL; Kim S; Park JA; Tegafaw T; Ahmad MY; Kim S; Saidi AKAA; Zhao D; Liu Y; Nam SW; Chae KS; Chang Y; Lee GH Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564300 [TBL] [Abstract][Full Text] [Related]
13. Europium-engineered iron oxide nanocubes with high T1 and T2 contrast abilities for MRI in living subjects. Yang L; Zhou Z; Liu H; Wu C; Zhang H; Huang G; Ai H; Gao J Nanoscale; 2015 Apr; 7(15):6843-50. PubMed ID: 25806860 [TBL] [Abstract][Full Text] [Related]
14. Determining the relaxivity values of protein cage-templated nanoparticles using magnetic resonance imaging. Sana B; Lim S Methods Mol Biol; 2015; 1252():39-50. PubMed ID: 25358771 [TBL] [Abstract][Full Text] [Related]
15. T1-T2 dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles. Xiao N; Gu W; Wang H; Deng Y; Shi X; Ye L J Colloid Interface Sci; 2014 Mar; 417():159-65. PubMed ID: 24407672 [TBL] [Abstract][Full Text] [Related]
17. One-step synthesis of water-dispersible ultra-small Fe3O4 nanoparticles as contrast agents for T1 and T2 magnetic resonance imaging. Wang G; Zhang X; Skallberg A; Liu Y; Hu Z; Mei X; Uvdal K Nanoscale; 2014 Mar; 6(5):2953-63. PubMed ID: 24480995 [TBL] [Abstract][Full Text] [Related]
18. Water-soluble MnO nanocolloid for a molecular T1 MR imaging: a facile one-pot synthesis, in vivo T1 MR images, and account for relaxivities. Baek MJ; Park JY; Xu W; Kattel K; Kim HG; Lee EJ; Patel AK; Lee JJ; Chang Y; Kim TJ; Bae JE; Chae KS; Lee GH ACS Appl Mater Interfaces; 2010 Oct; 2(10):2949-55. PubMed ID: 20929249 [TBL] [Abstract][Full Text] [Related]
19. Manganese doped iron oxide theranostic nanoparticles for combined T1 magnetic resonance imaging and photothermal therapy. Zhang M; Cao Y; Wang L; Ma Y; Tu X; Zhang Z ACS Appl Mater Interfaces; 2015 Mar; 7(8):4650-8. PubMed ID: 25672225 [TBL] [Abstract][Full Text] [Related]
20. Long-circulating PEGylated manganese ferrite nanoparticles for MRI-based molecular imaging. Pernia Leal M; Rivera-Fernández S; Franco JM; Pozo D; de la Fuente JM; García-Martín ML Nanoscale; 2015 Feb; 7(5):2050-9. PubMed ID: 25554363 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]