These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 29672048)

  • 1. Propagators for the Time-Dependent Kohn-Sham Equations: Multistep, Runge-Kutta, Exponential Runge-Kutta, and Commutator Free Magnus Methods.
    Gómez Pueyo A; Marques MAL; Rubio A; Castro A
    J Chem Theory Comput; 2018 Jun; 14(6):3040-3052. PubMed ID: 29672048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Propagators for Quantum-Classical Models: Commutator-Free Magnus Methods.
    Gómez Pueyo A; Blanes S; Castro A
    J Chem Theory Comput; 2020 Mar; 16(3):1420-1430. PubMed ID: 31999460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Symplectic ray tracing based on Hamiltonian optics in gradient-index media.
    Ohno H
    J Opt Soc Am A Opt Image Sci Vis; 2020 Mar; 37(3):411-416. PubMed ID: 32118924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exponential propagators for the Schrödinger equation with a time-dependent potential.
    Bader P; Blanes S; Kopylov N
    J Chem Phys; 2018 Jun; 148(24):244109. PubMed ID: 29960306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A unified discontinuous Galerkin framework for time integration.
    Zhao S; Wei GW
    Math Methods Appl Sci; 2014 May; 37(7):1042-1071. PubMed ID: 25382889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate time propagation method for the coupled Maxwell and Kohn-Sham equations.
    Li Y; He S; Russakoff A; Varga K
    Phys Rev E; 2016 Aug; 94(2-1):023314. PubMed ID: 27627419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Propagators for the time-dependent Kohn-Sham equations.
    Castro A; Marques MA; Rubio A
    J Chem Phys; 2004 Aug; 121(8):3425-33. PubMed ID: 15303905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diagonally implicit symplectic Runge-Kutta methods with high algebraic and dispersion order.
    Cong YH; Jiang CX
    ScientificWorldJournal; 2014; 2014():147801. PubMed ID: 24977178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exponentially fitted symplectic integrator.
    Simos TE; Vigo-Aguiar J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016701. PubMed ID: 12636631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implicit symmetric and symplectic exponentially fitted modified Runge-Kutta-Nyström methods for solving oscillatory problems.
    Chen BZ; Zhai WJ
    J Inequal Appl; 2018; 2018(1):321. PubMed ID: 30839814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ODE integration schemes for plane-wave real-time time-dependent density functional theory.
    Rehn DA; Shen Y; Buchholz ME; Dubey M; Namburu R; Reed EJ
    J Chem Phys; 2019 Jan; 150(1):014101. PubMed ID: 30621412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using preconditioned adaptive step size Runge-Kutta methods for solving the time-dependent Schrödinger equation.
    Tremblay JC; Carrington T
    J Chem Phys; 2004 Dec; 121(23):11535-41. PubMed ID: 15634118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plane-wave pseudopotential implementation of explicit integrators for time-dependent Kohn-Sham equations in large-scale simulations.
    Schleife A; Draeger EW; Kanai Y; Correa AA
    J Chem Phys; 2012 Dec; 137(22):22A546. PubMed ID: 23249083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symplectic integration and physical interpretation of time-dependent coupled-cluster theory.
    Pedersen TB; Kvaal S
    J Chem Phys; 2019 Apr; 150(14):144106. PubMed ID: 30981246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Projected Commutator DIIS Method for Accelerating Hybrid Functional Electronic Structure Calculations.
    Hu W; Lin L; Yang C
    J Chem Theory Comput; 2017 Nov; 13(11):5458-5467. PubMed ID: 28937762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variational symplectic integrator for long-time simulations of the guiding-center motion of charged particles in general magnetic fields.
    Qin H; Guan X
    Phys Rev Lett; 2008 Jan; 100(3):035006. PubMed ID: 18232993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic Bayesian Runge-Kutta method for dengue dynamic mapping.
    Mukhsar ; Wibawa GNA; Tenriawaru A; Usman I; Firihu MZ; Variani VI; Mansur ABF; Basori AH
    MethodsX; 2023; 10():101979. PubMed ID: 36619373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation Study on Effects of Order and Step Size of Runge-Kutta Methods that Solve Contagious Disease and Tumor Models.
    Wang Z; Wang Q; Klinke DJ
    J Comput Sci Syst Biol; 2016 Sep; 9(5):163-172. PubMed ID: 28220053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full Discretisations for Nonlinear Evolutionary Inequalities Based on Stiffly Accurate Runge-Kutta and
    Gwinner J; Thalhammer M
    Found Comut Math; 2014; 14(5):913-949. PubMed ID: 26029034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time propagation of the reduced one-electron density matrix in atom-centered Gaussian orbitals: application to absorption spectra of silicon clusters.
    Sun J; Song J; Zhao Y; Liang WZ
    J Chem Phys; 2007 Dec; 127(23):234107. PubMed ID: 18154375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.