BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29672241)

  • 1. Scintillation Yield Estimates of Colloidal Cerium-Doped LaF
    Kudinov KA; Cooper DR; Ha JK; Hill CK; Nadeau JL; Seuntjens JP; Bradforth SE
    Radiat Res; 2018 Jul; 190(1):28-36. PubMed ID: 29672241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoluminescence of cerium fluoride and cerium-doped lanthanum fluoride nanoparticles and investigation of energy transfer to photosensitizer molecules.
    Cooper DR; Kudinov K; Tyagi P; Hill CK; Bradforth SE; Nadeau JL
    Phys Chem Chem Phys; 2014 Jun; 16(24):12441-53. PubMed ID: 24827162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Efficient FRET System Capable of Deep Photodynamic Therapy Established on X-ray Excited Mesoporous LaF3:Tb Scintillating Nanoparticles.
    Tang Y; Hu J; Elmenoufy AH; Yang X
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):12261-9. PubMed ID: 25974980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of Genetically Encoded Photosensitizers with Scintillating Nanoparticles for X-ray Activated Photodynamic Therapy.
    Micheletto MC; Guidelli ÉJ; Costa-Filho AJ
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2289-2302. PubMed ID: 33405500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-distance energy transfer photosensitizers arising in hybrid nanoparticles leading to fluorescence emission and singlet oxygen luminescence quenching.
    Sève A; Couleaud P; Lux F; Tillement O; Arnoux P; André JC; Frochot C
    Photochem Photobiol Sci; 2012 May; 11(5):803-11. PubMed ID: 22362130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scintillating Nanoparticles as Energy Mediators for Enhanced Photodynamic Therapy.
    Kamkaew A; Chen F; Zhan Y; Majewski RL; Cai W
    ACS Nano; 2016 Apr; 10(4):3918-35. PubMed ID: 27043181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Therapeutic Considerations and Conjugated Polymer-Based Photosensitizers for Photodynamic Therapy.
    Meng Z; Hou W; Zhou H; Zhou L; Chen H; Wu C
    Macromol Rapid Commun; 2018 Mar; 39(5):. PubMed ID: 29251383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioconjugations of polyethylenimine-capped LaF3:Ce, Tb nanoparticles with bovine serum albumin and photoluminescent properties.
    Zhang W; Hua R; Shao W; Zhao J; Na L
    J Nanosci Nanotechnol; 2014 May; 14(5):3690-5. PubMed ID: 24734615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refluxing synthesis, photoluminescence and binding ability to deoxyribonucleic acid of water-soluble rare earth ion-doped LaF3 nanoparticles.
    Wang Z; Zhang Y; Li C; Zhang X; Chang J; Xie J; Li C
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4506-12. PubMed ID: 24738421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BODIPY-doped silica nanoparticles with reduced dye leakage and enhanced singlet oxygen generation.
    Wang Z; Hong X; Zong S; Tang C; Cui Y; Zheng Q
    Sci Rep; 2015 Jul; 5():12602. PubMed ID: 26211417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment.
    Chen W; Zhang J
    J Nanosci Nanotechnol; 2006 Apr; 6(4):1159-66. PubMed ID: 16736782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PEG-PLGA nanospheres loaded with nanoscintillators and photosensitizers for radiation-activated photodynamic therapy.
    Dinakaran D; Sengupta J; Pink D; Raturi A; Chen H; Usmani N; Kumar P; Lewis JD; Narain R; Moore RB
    Acta Biomater; 2020 Nov; 117():335-348. PubMed ID: 32956872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of LaF
    Tavakkoli F; Zahedifar M; Sadeghi E
    Photodiagnosis Photodyn Ther; 2018 Mar; 21():306-311. PubMed ID: 29331661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic-luminescent cerium-doped gadolinium aluminum garnet nanoparticles for simultaneous imaging and photodynamic therapy of cancer cells.
    Jain A; Koyani R; Muñoz C; Sengar P; Contreras OE; Juárez P; Hirata GA
    J Colloid Interface Sci; 2018 Sep; 526():220-229. PubMed ID: 29734089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient, conjugated-polymer-based nano-photosensitizers for selectively targeted two-photon photodynamic therapy and imaging of cancer cells.
    Shen X; Li S; Li L; Yao SQ; Xu QH
    Chemistry; 2015 Jan; 21(5):2214-21. PubMed ID: 25469739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocomposites for X-Ray Photodynamic Therapy.
    Gadzhimagomedova Z; Zolotukhin P; Kit O; Kirsanova D; Soldatov A
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32503329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence.
    Zhang C; Zhao K; Bu W; Ni D; Liu Y; Feng J; Shi J
    Angew Chem Int Ed Engl; 2015 Feb; 54(6):1770-4. PubMed ID: 25483028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New CeF
    Orsi D; Rimoldi T; Pinelli S; Alinovi R; Goldoni M; Benecchi G; Rossi F; Cristofolini L
    Nanomedicine (Lond); 2018 Sep; 13(18):2311-2326. PubMed ID: 30198424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Red-emitting upconverting nanoparticles for photodynamic therapy in cancer cells under near-infrared excitation.
    Tian G; Ren W; Yan L; Jian S; Gu Z; Zhou L; Jin S; Yin W; Li S; Zhao Y
    Small; 2013 Jun; 9(11):1929-38, 1928. PubMed ID: 23239556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy.
    Wang M; Chen Z; Zheng W; Zhu H; Lu S; Ma E; Tu D; Zhou S; Huang M; Chen X
    Nanoscale; 2014 Jul; 6(14):8274-82. PubMed ID: 24933297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.