These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 29672241)
1. Scintillation Yield Estimates of Colloidal Cerium-Doped LaF Kudinov KA; Cooper DR; Ha JK; Hill CK; Nadeau JL; Seuntjens JP; Bradforth SE Radiat Res; 2018 Jul; 190(1):28-36. PubMed ID: 29672241 [TBL] [Abstract][Full Text] [Related]
2. Photoluminescence of cerium fluoride and cerium-doped lanthanum fluoride nanoparticles and investigation of energy transfer to photosensitizer molecules. Cooper DR; Kudinov K; Tyagi P; Hill CK; Bradforth SE; Nadeau JL Phys Chem Chem Phys; 2014 Jun; 16(24):12441-53. PubMed ID: 24827162 [TBL] [Abstract][Full Text] [Related]
3. Highly Efficient FRET System Capable of Deep Photodynamic Therapy Established on X-ray Excited Mesoporous LaF3:Tb Scintillating Nanoparticles. Tang Y; Hu J; Elmenoufy AH; Yang X ACS Appl Mater Interfaces; 2015 Jun; 7(22):12261-9. PubMed ID: 25974980 [TBL] [Abstract][Full Text] [Related]
4. Interaction of Genetically Encoded Photosensitizers with Scintillating Nanoparticles for X-ray Activated Photodynamic Therapy. Micheletto MC; Guidelli ÉJ; Costa-Filho AJ ACS Appl Mater Interfaces; 2021 Jan; 13(2):2289-2302. PubMed ID: 33405500 [TBL] [Abstract][Full Text] [Related]
5. Size-Dependent Blue Emission from Europium-Doped Strontium Fluoride Nanoscintillators for X-Ray-Activated Photodynamic Therapy. Policei Marques N; Isikawa MM; Muradova Z; Morris T; Berbeco R; Guidelli EJ Adv Healthc Mater; 2024 Aug; 13(20):e2400372. PubMed ID: 38630101 [TBL] [Abstract][Full Text] [Related]
6. Long-distance energy transfer photosensitizers arising in hybrid nanoparticles leading to fluorescence emission and singlet oxygen luminescence quenching. Sève A; Couleaud P; Lux F; Tillement O; Arnoux P; André JC; Frochot C Photochem Photobiol Sci; 2012 May; 11(5):803-11. PubMed ID: 22362130 [TBL] [Abstract][Full Text] [Related]
7. Scintillating Nanoparticles as Energy Mediators for Enhanced Photodynamic Therapy. Kamkaew A; Chen F; Zhan Y; Majewski RL; Cai W ACS Nano; 2016 Apr; 10(4):3918-35. PubMed ID: 27043181 [TBL] [Abstract][Full Text] [Related]
8. Microfluidic Synthesis of Theranostic Nanoparticles with Near-Infrared Scintillation: Toward Next-Generation Dosimetry in X-ray-Induced Photodynamic Therapy. Isikawa M; Guidelli E ACS Appl Mater Interfaces; 2022 Jan; 14(1):324-336. PubMed ID: 34963048 [TBL] [Abstract][Full Text] [Related]
10. Bioconjugations of polyethylenimine-capped LaF3:Ce, Tb nanoparticles with bovine serum albumin and photoluminescent properties. Zhang W; Hua R; Shao W; Zhao J; Na L J Nanosci Nanotechnol; 2014 May; 14(5):3690-5. PubMed ID: 24734615 [TBL] [Abstract][Full Text] [Related]
11. Refluxing synthesis, photoluminescence and binding ability to deoxyribonucleic acid of water-soluble rare earth ion-doped LaF3 nanoparticles. Wang Z; Zhang Y; Li C; Zhang X; Chang J; Xie J; Li C J Nanosci Nanotechnol; 2014 Jun; 14(6):4506-12. PubMed ID: 24738421 [TBL] [Abstract][Full Text] [Related]
12. BODIPY-doped silica nanoparticles with reduced dye leakage and enhanced singlet oxygen generation. Wang Z; Hong X; Zong S; Tang C; Cui Y; Zheng Q Sci Rep; 2015 Jul; 5():12602. PubMed ID: 26211417 [TBL] [Abstract][Full Text] [Related]
13. Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. Chen W; Zhang J J Nanosci Nanotechnol; 2006 Apr; 6(4):1159-66. PubMed ID: 16736782 [TBL] [Abstract][Full Text] [Related]
14. PEG-PLGA nanospheres loaded with nanoscintillators and photosensitizers for radiation-activated photodynamic therapy. Dinakaran D; Sengupta J; Pink D; Raturi A; Chen H; Usmani N; Kumar P; Lewis JD; Narain R; Moore RB Acta Biomater; 2020 Nov; 117():335-348. PubMed ID: 32956872 [TBL] [Abstract][Full Text] [Related]
15. Effect of LaF Tavakkoli F; Zahedifar M; Sadeghi E Photodiagnosis Photodyn Ther; 2018 Mar; 21():306-311. PubMed ID: 29331661 [TBL] [Abstract][Full Text] [Related]
16. Magnetic-luminescent cerium-doped gadolinium aluminum garnet nanoparticles for simultaneous imaging and photodynamic therapy of cancer cells. Jain A; Koyani R; Muñoz C; Sengar P; Contreras OE; Juárez P; Hirata GA J Colloid Interface Sci; 2018 Sep; 526():220-229. PubMed ID: 29734089 [TBL] [Abstract][Full Text] [Related]
17. Highly efficient, conjugated-polymer-based nano-photosensitizers for selectively targeted two-photon photodynamic therapy and imaging of cancer cells. Shen X; Li S; Li L; Yao SQ; Xu QH Chemistry; 2015 Jan; 21(5):2214-21. PubMed ID: 25469739 [TBL] [Abstract][Full Text] [Related]
18. Nanocomposites for X-Ray Photodynamic Therapy. Gadzhimagomedova Z; Zolotukhin P; Kit O; Kirsanova D; Soldatov A Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32503329 [TBL] [Abstract][Full Text] [Related]
19. Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence. Zhang C; Zhao K; Bu W; Ni D; Liu Y; Feng J; Shi J Angew Chem Int Ed Engl; 2015 Feb; 54(6):1770-4. PubMed ID: 25483028 [TBL] [Abstract][Full Text] [Related]