These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
517 related articles for article (PubMed ID: 29672563)
21. Alterations of the outer retina in non-arteritic anterior ischaemic optic neuropathy detected using spectral-domain optical coherence tomography. Ackermann P; Brachert M; Albrecht P; Ringelstein M; Finis D; Geerling G; Aktas O; Guthoff R Clin Exp Ophthalmol; 2017 Jul; 45(5):496-508. PubMed ID: 28133888 [TBL] [Abstract][Full Text] [Related]
22. Thickness mapping of retinal layers by spectral-domain optical coherence tomography. Loduca AL; Zhang C; Zelkha R; Shahidi M Am J Ophthalmol; 2010 Dec; 150(6):849-55. PubMed ID: 20951975 [TBL] [Abstract][Full Text] [Related]
23. Differential vulnerability of retinal layers to early age-related macular degeneration: evidence by SD-OCT segmentation analysis. Savastano MC; Minnella AM; Tamburrino A; Giovinco G; Ventre S; Falsini B Invest Ophthalmol Vis Sci; 2014 Jan; 55(1):560-6. PubMed ID: 24408984 [TBL] [Abstract][Full Text] [Related]
24. The macula in pediatric glaucoma: quantifying the inner and outer layers via optical coherence tomography automatic segmentation. Silverstein E; Freedman S; Zéhil GP; Jiramongkolchai K; El-Dairi M J AAPOS; 2016 Aug; 20(4):332-6. PubMed ID: 27381526 [TBL] [Abstract][Full Text] [Related]
25. Temporal Relation between Macular Ganglion Cell-Inner Plexiform Layer Loss and Peripapillary Retinal Nerve Fiber Layer Loss in Glaucoma. Kim YK; Ha A; Na KI; Kim HJ; Jeoung JW; Park KH Ophthalmology; 2017 Jul; 124(7):1056-1064. PubMed ID: 28408038 [TBL] [Abstract][Full Text] [Related]
26. Automated macular segmentation with spectral domain optical coherence tomography in the fellow eyes of patients with unilateral retinal vein occlusion. Cetin EN; Bozkurt K; Parca O; Pekel G Int Ophthalmol; 2019 Sep; 39(9):2049-2056. PubMed ID: 30421317 [TBL] [Abstract][Full Text] [Related]
30. Predicted and measured retinal nerve fiber layer thickness from time-domain optical coherence tomography compared with spectral-domain optical coherence tomography. Schrems WA; Schrems-Hoesl LM; Bendschneider D; Mardin CY; Laemmer R; Kruse FE; Horn FK JAMA Ophthalmol; 2015 Oct; 133(10):1135-43. PubMed ID: 26225533 [TBL] [Abstract][Full Text] [Related]
31. Analysis of Agreement of Retinal-Layer Thickness Measures Derived from the Segmentation of Horizontal and Vertical Spectralis OCT Macular Scans. Gonzalez Caldito N; Antony B; He Y; Lang A; Nguyen J; Rothman A; Ogbuokiri E; Avornu A; Balcer L; Frohman E; Frohman TC; Bhargava P; Prince J; Calabresi PA; Saidha S Curr Eye Res; 2018 Mar; 43(3):415-423. PubMed ID: 29240464 [TBL] [Abstract][Full Text] [Related]
32. [Analysis of Glaucomatous Changes of the Macula Using Optical Coherence Tomography]. Unterlauft JD; Theilig T; Hasan S; Böhm MR; Rauscher F Klin Monbl Augenheilkd; 2020 Feb; 237(2):185-191. PubMed ID: 30736078 [TBL] [Abstract][Full Text] [Related]
33. Detection of glaucoma progression by assessment of segmented macular thickness data obtained using spectral domain optical coherence tomography. Na JH; Sung KR; Baek S; Kim YJ; Durbin MK; Lee HJ; Kim HK; Sohn YH Invest Ophthalmol Vis Sci; 2012 Jun; 53(7):3817-26. PubMed ID: 22562510 [TBL] [Abstract][Full Text] [Related]
34. Topographic profiles of retinal nerve fiber layer defects affect the diagnostic performance of macular scans in preperimetric glaucoma. Kim MJ; Jeoung JW; Park KH; Choi YJ; Kim DM Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2079-87. PubMed ID: 24576877 [TBL] [Abstract][Full Text] [Related]
35. Ultra-high resolution profiles of macular intra-retinal layer thicknesses and associations with visual field defects in primary open angle glaucoma. Chen Q; Huang S; Ma Q; Lin H; Pan M; Liu X; Lu F; Shen M Sci Rep; 2017 Feb; 7():41100. PubMed ID: 28169283 [TBL] [Abstract][Full Text] [Related]
36. Glaucomatous Maculopathy: Thickness Differences on Inner and Outer Macular Layers between Ocular Hypertension and Early Primary Open-Angle Glaucoma Using 8 × 8 Posterior Pole Algorithm of SD-OCT. Garcia-Medina JJ; Del-Rio-Vellosillo M; Palazon-Cabanes A; Pinazo-Duran MD; Zanon-Moreno V; Villegas-Perez MP J Clin Med; 2020 May; 9(5):. PubMed ID: 32429480 [TBL] [Abstract][Full Text] [Related]
37. Cluster analyses of grid-pattern display in macular parameters using optical coherence tomography for glaucoma diagnosis. Kanamori A; Naka M; Akashi A; Fujihara M; Yamada Y; Nakamura M Invest Ophthalmol Vis Sci; 2013 Sep; 54(9):6401-8. PubMed ID: 23989192 [TBL] [Abstract][Full Text] [Related]
38. The thickness of the retinal nerve fiber layer, macula, and ganglion cell-inner plexiform layer in people with drug-resistant epilepsy. Chen Y; Xiong W; Lu L; Wu X; Cao L; Chen J; Xiao Y; Sander JW; Wu B; Zhou D Epilepsia Open; 2024 Oct; 9(5):1783-1792. PubMed ID: 39139018 [TBL] [Abstract][Full Text] [Related]
39. Analysis of spectral-domain optical coherence tomography measurements in amblyopia: a pilot study. Park KA; Park DY; Oh SY Br J Ophthalmol; 2011 Dec; 95(12):1700-6. PubMed ID: 21427458 [TBL] [Abstract][Full Text] [Related]
40. Retinal layer segmentation in patients with multiple sclerosis using spectral domain optical coherence tomography. Garcia-Martin E; Polo V; Larrosa JM; Marques ML; Herrero R; Martin J; Ara JR; Fernandez J; Pablo LE Ophthalmology; 2014 Feb; 121(2):573-9. PubMed ID: 24268855 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]