These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29672669)

  • 1. CRISPR/Cas9 cleavage efficiency regression through boosting algorithms and Markov sequence profiling.
    Peng H; Zheng Y; Blumenstein M; Tao D; Li J
    Bioinformatics; 2018 Sep; 34(18):3069-3077. PubMed ID: 29672669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition of CRISPR/Cas9 off-target sites through ensemble learning of uneven mismatch distributions.
    Peng H; Zheng Y; Zhao Z; Liu T; Li J
    Bioinformatics; 2018 Sep; 34(17):i757-i765. PubMed ID: 30423065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalizable sgRNA design for improved CRISPR/Cas9 editing efficiency.
    Hiranniramol K; Chen Y; Liu W; Wang X
    Bioinformatics; 2020 May; 36(9):2684-2689. PubMed ID: 31971562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPRpred: A flexible and efficient tool for sgRNAs on-target activity prediction in CRISPR/Cas9 systems.
    Rahman MK; Rahman MS
    PLoS One; 2017; 12(8):e0181943. PubMed ID: 28767689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ge-CRISPR - An integrated pipeline for the prediction and analysis of sgRNAs genome editing efficiency for CRISPR/Cas system.
    Kaur K; Gupta AK; Rajput A; Kumar M
    Sci Rep; 2016 Sep; 6():30870. PubMed ID: 27581337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepCRISTL: deep transfer learning to predict CRISPR/Cas9 functional and endogenous on-target editing efficiency.
    Elkayam S; Orenstein Y
    Bioinformatics; 2022 Jun; 38(Suppl 1):i161-i168. PubMed ID: 35758815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PAVOOC: designing CRISPR sgRNAs using 3D protein structures and functional domain annotations.
    Schaefer M; Clevert DA; Weiss B; Steffen A
    Bioinformatics; 2019 Jul; 35(13):2309-2310. PubMed ID: 30445568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR.
    Haeussler M; Schönig K; Eckert H; Eschstruth A; Mianné J; Renaud JB; Schneider-Maunoury S; Shkumatava A; Teboul L; Kent J; Joly JS; Concordet JP
    Genome Biol; 2016 Jul; 17(1):148. PubMed ID: 27380939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of CRISPR sgRNA Activity Using a Deep Convolutional Neural Network.
    Xue L; Tang B; Chen W; Luo J
    J Chem Inf Model; 2019 Jan; 59(1):615-624. PubMed ID: 30485088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole genome analysis of CRISPR Cas9 sgRNA off-target homologies via an efficient computational algorithm.
    Zhou H; Zhou M; Li D; Manthey J; Lioutikova E; Wang H; Zeng X
    BMC Genomics; 2017 Nov; 18(Suppl 9):826. PubMed ID: 29219081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of efficiency prediction algorithms and development of ensemble model for CRISPR/Cas9 gRNA selection.
    Chen Y; Wang X
    Bioinformatics; 2022 Nov; 38(23):5175-5181. PubMed ID: 36227031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo.
    Moreno-Mateos MA; Vejnar CE; Beaudoin JD; Fernandez JP; Mis EK; Khokha MK; Giraldez AJ
    Nat Methods; 2015 Oct; 12(10):982-8. PubMed ID: 26322839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BoostMEC: predicting CRISPR-Cas9 cleavage efficiency through boosting models.
    Zarate OA; Yang Y; Wang X; Wang JP
    BMC Bioinformatics; 2022 Oct; 23(1):446. PubMed ID: 36289480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing.
    Liang G; Zhang H; Lou D; Yu D
    Sci Rep; 2016 Feb; 6():21451. PubMed ID: 26891616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A G-quadruplex motif at the 3' end of sgRNAs improves CRISPR-Cas9 based genome editing efficiency.
    Nahar S; Sehgal P; Azhar M; Rai M; Singh A; Sivasubbu S; Chakraborty D; Maiti S
    Chem Commun (Camb); 2018 Mar; 54(19):2377-2380. PubMed ID: 29450416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. sgRNA-2wPSM: Identify sgRNAs on-target activity by combining two-window-based position specific mismatch and synthetic minority oversampling technique.
    Zhang L; Bai T; Wu H
    Comput Biol Med; 2023 Mar; 155():106489. PubMed ID: 36841059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. sgRNA Sequence Motifs Blocking Efficient CRISPR/Cas9-Mediated Gene Editing.
    Graf R; Li X; Chu VT; Rajewsky K
    Cell Rep; 2019 Jan; 26(5):1098-1103.e3. PubMed ID: 30699341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crisflash: open-source software to generate CRISPR guide RNAs against genomes annotated with individual variation.
    Jacquin ALS; Odom DT; Lukk M
    Bioinformatics; 2019 Sep; 35(17):3146-3147. PubMed ID: 30649181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved design and analysis of CRISPR knockout screens.
    Chen CH; Xiao T; Xu H; Jiang P; Meyer CA; Li W; Brown M; Liu XS
    Bioinformatics; 2018 Dec; 34(23):4095-4101. PubMed ID: 29868757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized CRISPR-Cas9 System for Genome Editing in Zebrafish.
    Vejnar CE; Moreno-Mateos MA; Cifuentes D; Bazzini AA; Giraldez AJ
    Cold Spring Harb Protoc; 2016 Oct; 2016(10):. PubMed ID: 27698232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.