These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 29672675)

  • 1. Parapred: antibody paratope prediction using convolutional and recurrent neural networks.
    Liberis E; Velickovic P; Sormanni P; Vendruscolo M; Liò P
    Bioinformatics; 2018 Sep; 34(17):2944-2950. PubMed ID: 29672675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attentive Cross-Modal Paratope Prediction.
    Deac A; VeliČković P; Sormanni P
    J Comput Biol; 2019 Jun; 26(6):536-545. PubMed ID: 30508394
    [No Abstract]   [Full Text] [Related]  

  • 3. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks.
    Adhikari B; Hou J; Cheng J
    Bioinformatics; 2018 May; 34(9):1466-1472. PubMed ID: 29228185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paragraph-antibody paratope prediction using graph neural networks with minimal feature vectors.
    Chinery L; Wahome N; Moal I; Deane CM
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36370083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. proABC-2: PRediction of AntiBody contacts v2 and its application to information-driven docking.
    Ambrosetti F; Olsen TH; Olimpieri PP; Jiménez-García B; Milanetti E; Marcatilli P; Bonvin AMJJ
    Bioinformatics; 2020 Dec; 36(20):5107-5108. PubMed ID: 32683441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Paratope-Epitope Pairs Using Convolutional Neural Networks.
    Li D; Pucci F; Rooman M
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of G-protein coupled receptors based on a rich generation of convolutional neural network, N-gram transformation and multiple sequence alignments.
    Li M; Ling C; Xu Q; Gao J
    Amino Acids; 2018 Feb; 50(2):255-266. PubMed ID: 29151135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A compact vocabulary of paratope-epitope interactions enables predictability of antibody-antigen binding.
    Akbar R; Robert PA; Pavlović M; Jeliazkov JR; Snapkov I; Slabodkin A; Weber CR; Scheffer L; Miho E; Haff IH; Haug DTT; Lund-Johansen F; Safonova Y; Sandve GK; Greiff V
    Cell Rep; 2021 Mar; 34(11):108856. PubMed ID: 33730590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibody Specific B-Cell Epitope Predictions: Leveraging Information From Antibody-Antigen Protein Complexes.
    Jespersen MC; Mahajan S; Peters B; Nielsen M; Marcatili P
    Front Immunol; 2019; 10():298. PubMed ID: 30863406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting the Role of Features for Antigens-Antibodies Interaction Site Prediction.
    Quadrini M; Ferrari C
    Methods Mol Biol; 2024; 2780():303-325. PubMed ID: 38987475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibody i-Patch prediction of the antibody binding site improves rigid local antibody-antigen docking.
    Krawczyk K; Baker T; Shi J; Deane CM
    Protein Eng Des Sel; 2013 Oct; 26(10):621-9. PubMed ID: 24006373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AUCpreD: proteome-level protein disorder prediction by AUC-maximized deep convolutional neural fields.
    Wang S; Ma J; Xu J
    Bioinformatics; 2016 Sep; 32(17):i672-i679. PubMed ID: 27587688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features.
    Jones DT; Kandathil SM
    Bioinformatics; 2018 Oct; 34(19):3308-3315. PubMed ID: 29718112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep neural network approach for learning intrinsic protein-RNA binding preferences.
    Ben-Bassat I; Chor B; Orenstein Y
    Bioinformatics; 2018 Sep; 34(17):i638-i646. PubMed ID: 30423078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein secondary structure prediction improved by recurrent neural networks integrated with two-dimensional convolutional neural networks.
    Guo Y; Wang B; Li W; Yang B
    J Bioinform Comput Biol; 2018 Oct; 16(5):1850021. PubMed ID: 30419785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural networks.
    Pan X; Shen HB
    Bioinformatics; 2018 Oct; 34(20):3427-3436. PubMed ID: 29722865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning improves antimicrobial peptide recognition.
    Veltri D; Kamath U; Shehu A
    Bioinformatics; 2018 Aug; 34(16):2740-2747. PubMed ID: 29590297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PlasGUN: gene prediction in plasmid metagenomic short reads using deep learning.
    Fang Z; Tan J; Wu S; Li M; Wang C; Liu Y; Zhu H
    Bioinformatics; 2020 May; 36(10):3239-3241. PubMed ID: 32091572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep learning architecture for metabolic pathway prediction.
    Baranwal M; Magner A; Elvati P; Saldinger J; Violi A; Hero AO
    Bioinformatics; 2020 Apr; 36(8):2547-2553. PubMed ID: 31879763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.