These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 29672728)

  • 1. Tetraneura ulmi (Hemiptera: Eriosomatinae) Induces Oxidative Stress and Alters Antioxidant Enzyme Activities in Elm Leaves.
    Kmiec K; Rubinowska K; Golan K
    Environ Entomol; 2018 Aug; 47(4):840-847. PubMed ID: 29672728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Variation of Selected Physiological Parameters in Elm Leaves (
    Kmieć K; Kot I; Rubinowska K; Górska-Drabik E; Golan K; Sytykiewicz H
    Plants (Basel); 2022 Jan; 11(3):. PubMed ID: 35161224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of Tetraneura ulmi L. galling process on the activity of amino acid decarboxylases and the content of biogenic amines in Siberian elm tissues.
    Kmieć K; Sempruch C; Chrzanowski G; Czerniewicz P
    Bull Entomol Res; 2018 Feb; 108(1):69-76. PubMed ID: 28514972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological Response of Pedunculate Oak Trees to Gall-Inducing Cynipidae.
    Kot I; Rubinowska K
    Environ Entomol; 2018 Jun; 47(3):669-675. PubMed ID: 29659765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic characterization of gall tissue of Japanese elm tree (Ulmus davidiana var. japonica) induced by the aphid Tetraneura nigriabdominalis.
    Takei M; Ito S; Tanaka K; Ishige T; Suzuki Y
    Biosci Biotechnol Biochem; 2017 Jun; 81(6):1069-1077. PubMed ID: 28164745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive significance of gall formation for a gall-inducing aphids on Japanese elm trees.
    Takei M; Yoshida S; Kawai T; Hasegawa M; Suzuki Y
    J Insect Physiol; 2015 Jan; 72():43-51. PubMed ID: 25437243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poplar Tree Response to Feeding by the Petiole Gall Aphid
    Kot I; Kmieć K
    Insects; 2020 May; 11(5):. PubMed ID: 32380670
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of
    Kot I; Sempruch C; Rubinowska K; Michałek W
    Bull Entomol Res; 2020 Feb; 110(1):34-43. PubMed ID: 31190653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronism between Aspidosperma macrocarpon (Apocynaceae) resources allocation and the establishment of the gall inducer Pseudophacopteron sp. (Hemiptera: Psylloidea).
    Castro AC; Oliveira DC; Moreira AS; lsaias RM
    Rev Biol Trop; 2013 Dec; 61(4):1891-900. PubMed ID: 24432541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotypic plasticity and similarity among gall morphotypes on a superhost, Baccharis reticularia (Asteraceae).
    Formiga AT; Silveira FA; Fernandes GW; Isaias RM
    Plant Biol (Stuttg); 2015 Mar; 17(2):512-21. PubMed ID: 25124804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental pathway from leaves to galls induced by a sap-feeding insect on Schinus polygamus (Cav.) Cabrera (Anacardiaceae).
    Dias GG; Ferreira BG; Moreira GR; Isaias RM
    An Acad Bras Cienc; 2013 Mar; 85(1):187-200. PubMed ID: 23538957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gall development and clone dynamics of the galling aphid Schlechtendalia chinensis (Hemiptera: Pemphigidae).
    Shao SX; Yang ZX; Chen XM
    J Econ Entomol; 2013 Aug; 106(4):1628-37. PubMed ID: 24020275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological response of Populus nigra 'Italica' to galling aphids feeding.
    Kmieć K; Kot I
    Plant Biol (Stuttg); 2021 Jul; 23(4):675-679. PubMed ID: 33780123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in Monoterpene Biosynthesis and Accumulation in Pistacia palaestina Leaves and Aphid-Induced Galls.
    Rand K; Bar E; Ari MB; Davidovich-Rikanati R; Dudareva N; Inbar M; Lewinsohn E
    J Chem Ecol; 2017 Feb; 43(2):143-152. PubMed ID: 28108840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the differential gene expression of elm leaves fed on by Tetraneura akinire Sasaki.
    Lu HB; Jin LP; Wei D; Huang ZH
    Genes Genomics; 2019 Dec; 41(12):1505-1516. PubMed ID: 31587147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in clonal poplar leaf chemistry caused by stem galls alter herbivory and leaf litter decomposition.
    Künkler N; Brandl R; Brändle M
    PLoS One; 2013; 8(11):e79994. PubMed ID: 24260333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudophacopteron longicaudatum (Hemiptera) induces intralaminar leaf galls on Aspidosperma tomentosum (Apocynaceae): a qualitative and quantitative structural overview.
    Oliveira DC; Martini VC; Moreira ASFP; Fuzaro L; GonÇalves LA
    An Acad Bras Cienc; 2020; 92(suppl 2):e20181002. PubMed ID: 33084750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemiptera-induced galls of Sapium glandulosum have histological and cytological compartmentalization created with a large amount of carbohydrate.
    Rosa LMP; Silva MS; da Silva Carneiro RG; Machado M; Kuster VC
    Protoplasma; 2024 May; 261(3):593-606. PubMed ID: 38195894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytohormones related to host plant manipulation by a gall-inducing leafhopper.
    Tokuda M; Jikumaru Y; Matsukura K; Takebayashi Y; Kumashiro S; Matsumura M; Kamiya Y
    PLoS One; 2013; 8(4):e62350. PubMed ID: 23638047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal fluctuations in natural selection acting on the gall-parasitic aphid Tetraneura sorini.
    Muramatsu K; Akimoto S
    J Evol Biol; 2016 Jul; 29(7):1423-36. PubMed ID: 27087064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.