These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. EWS-FLI1 reprograms the metabolism of Ewing sarcoma cells via positive regulation of glutamine import and serine-glycine biosynthesis. Sen N; Cross AM; Lorenzi PL; Khan J; Gryder BE; Kim S; Caplen NJ Mol Carcinog; 2018 Oct; 57(10):1342-1357. PubMed ID: 29873416 [TBL] [Abstract][Full Text] [Related]
5. EWS-FLI1-regulated Serine Synthesis and Exogenous Serine are Necessary for Ewing Sarcoma Cellular Proliferation and Tumor Growth. Issaq SH; Mendoza A; Kidner R; Rosales TI; Duveau DY; Heske CM; Rohde JM; Boxer MB; Thomas CJ; DeBerardinis RJ; Helman LJ Mol Cancer Ther; 2020 Jul; 19(7):1520-1529. PubMed ID: 32371575 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of VTP-50469, a menin-MLL1 inhibitor, against Ewing sarcoma xenograft models by the pediatric preclinical testing consortium. Kurmasheva RT; Bandyopadhyay A; Favours E; Pozo VD; Ghilu S; Phelps DA; McGeehan GM; Erickson SW; Smith MA; Houghton PJ Pediatr Blood Cancer; 2020 Jul; 67(7):e28284. PubMed ID: 32333633 [TBL] [Abstract][Full Text] [Related]
7. BET bromodomain inhibitors suppress EWS-FLI1-dependent transcription and the IGF1 autocrine mechanism in Ewing sarcoma. Loganathan SN; Tang N; Fleming JT; Ma Y; Guo Y; Borinstein SC; Chiang C; Wang J Oncotarget; 2016 Jul; 7(28):43504-43517. PubMed ID: 27259270 [TBL] [Abstract][Full Text] [Related]
8. EWS/FLI is a Master Regulator of Metabolic Reprogramming in Ewing Sarcoma. Tanner JM; Bensard C; Wei P; Krah NM; Schell JC; Gardiner J; Schiffman J; Lessnick SL; Rutter J Mol Cancer Res; 2017 Nov; 15(11):1517-1530. PubMed ID: 28720588 [TBL] [Abstract][Full Text] [Related]
9. Targeting the EWS-ETS transcriptional program by BET bromodomain inhibition in Ewing sarcoma. Hensel T; Giorgi C; Schmidt O; Calzada-Wack J; Neff F; Buch T; Niggli FK; Schäfer BW; Burdach S; Richter GH Oncotarget; 2016 Jan; 7(2):1451-63. PubMed ID: 26623725 [TBL] [Abstract][Full Text] [Related]
10. ATF3 promotes the serine synthesis pathway and tumor growth under dietary serine restriction. Li X; Gracilla D; Cai L; Zhang M; Yu X; Chen X; Zhang J; Long X; Ding HF; Yan C Cell Rep; 2021 Sep; 36(12):109706. PubMed ID: 34551291 [TBL] [Abstract][Full Text] [Related]
11. Targeting the epigenetic readers in Ewing sarcoma inhibits the oncogenic transcription factor EWS/Fli1. Jacques C; Lamoureux F; Baud'huin M; Rodriguez Calleja L; Quillard T; Amiaud J; Tirode F; Rédini F; Bradner JE; Heymann D; Ory B Oncotarget; 2016 Apr; 7(17):24125-40. PubMed ID: 27006472 [TBL] [Abstract][Full Text] [Related]
12. Co-inhibition of HDAC and MLL-menin interaction targets MLL-rearranged acute myeloid leukemia cells via disruption of DNA damage checkpoint and DNA repair. Ye J; Zha J; Shi Y; Li Y; Yuan D; Chen Q; Lin F; Fang Z; Yu Y; Dai Y; Xu B Clin Epigenetics; 2019 Oct; 11(1):137. PubMed ID: 31590682 [TBL] [Abstract][Full Text] [Related]
13. Functional, chemical genomic, and super-enhancer screening identify sensitivity to cyclin D1/CDK4 pathway inhibition in Ewing sarcoma. Kennedy AL; Vallurupalli M; Chen L; Crompton B; Cowley G; Vazquez F; Weir BA; Tsherniak A; Parasuraman S; Kim S; Alexe G; Stegmaier K Oncotarget; 2015 Oct; 6(30):30178-93. PubMed ID: 26337082 [TBL] [Abstract][Full Text] [Related]
14. Distinct pathways affected by menin versus MLL1/MLL2 in MLL-rearranged acute myeloid leukemia. Chen Y; Jones KL; Anastassiadis K; Kranz A; Stewart AF; Grembecka J; Meyerson M; Ernst P Exp Hematol; 2019 Jan; 69():37-42. PubMed ID: 30315824 [TBL] [Abstract][Full Text] [Related]
15. Overexpression of HOX genes is prevalent in Ewing sarcoma and is associated with altered epigenetic regulation of developmental transcription programs. Svoboda LK; Harris A; Bailey NJ; Schwentner R; Tomazou E; von Levetzow C; Magnuson B; Ljungman M; Kovar H; Lawlor ER Epigenetics; 2014 Dec; 9(12):1613-25. PubMed ID: 25625846 [TBL] [Abstract][Full Text] [Related]
16. Epigenetic alterations contribute to promoter activity of imprinting gene IGF2. Zheng QF; Xu B; Wang HM; Ding LH; Liu JY; Zhu LY; Qiu H; Zhang L; Ni GY; Ye J; Gao SB; Jin GH Biochim Biophys Acta Gene Regul Mech; 2018 Feb; 1861(2):117-124. PubMed ID: 29413895 [TBL] [Abstract][Full Text] [Related]
17. Structural insights into inhibition of the bivalent menin-MLL interaction by small molecules in leukemia. Shi A; Murai MJ; He S; Lund G; Hartley T; Purohit T; Reddy G; Chruszcz M; Grembecka J; Cierpicki T Blood; 2012 Nov; 120(23):4461-9. PubMed ID: 22936661 [TBL] [Abstract][Full Text] [Related]
18. The menin-MLL1 interaction is a molecular dependency in NUP98-rearranged AML. Heikamp EB; Henrich JA; Perner F; Wong EM; Hatton C; Wen Y; Barwe SP; Gopalakrishnapillai A; Xu H; Uckelmann HJ; Takao S; Kazansky Y; Pikman Y; McGeehan GM; Kolb EA; Kentsis A; Armstrong SA Blood; 2022 Feb; 139(6):894-906. PubMed ID: 34582559 [TBL] [Abstract][Full Text] [Related]
19. Pharmacologic inhibition of the Menin-MLL interaction blocks progression of MLL leukemia in vivo. Borkin D; He S; Miao H; Kempinska K; Pollock J; Chase J; Purohit T; Malik B; Zhao T; Wang J; Wen B; Zong H; Jones M; Danet-Desnoyers G; Guzman ML; Talpaz M; Bixby DL; Sun D; Hess JL; Muntean AG; Maillard I; Cierpicki T; Grembecka J Cancer Cell; 2015 Apr; 27(4):589-602. PubMed ID: 25817203 [TBL] [Abstract][Full Text] [Related]
20. Functional diversity of inhibitors tackling the differentiation blockage of MLL-rearranged leukemia. Brzezinka K; Nevedomskaya E; Lesche R; Steckel M; Eheim AL; Haegebarth A; Stresemann C J Hematol Oncol; 2019 Jun; 12(1):66. PubMed ID: 31253180 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]