These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 29672968)
1. Potent 3-Hydroxy-2-Pyridine Aldoxime Reactivators of Organophosphate-Inhibited Cholinesterases with Predicted Blood-Brain Barrier Penetration. Zorbaz T; Braïki A; Maraković N; Renou J; de la Mora E; Maček Hrvat N; Katalinić M; Silman I; Sussman JL; Mercey G; Gomez C; Mougeot R; Pérez B; Baati R; Nachon F; Weik M; Jean L; Kovarik Z; Renard PY Chemistry; 2018 Jul; 24(38):9675-9691. PubMed ID: 29672968 [TBL] [Abstract][Full Text] [Related]
2. New structural scaffolds for centrally acting oxime reactivators of phosphylated cholinesterases. Sit RK; Radić Z; Gerardi V; Zhang L; Garcia E; Katalinić M; Amitai G; Kovarik Z; Fokin VV; Sharpless KB; Taylor P J Biol Chem; 2011 Jun; 286(22):19422-30. PubMed ID: 21464125 [TBL] [Abstract][Full Text] [Related]
3. Catalytic detoxification of nerve agent and pesticide organophosphates by butyrylcholinesterase assisted with non-pyridinium oximes. Radić Z; Dale T; Kovarik Z; Berend S; Garcia E; Zhang L; Amitai G; Green C; Radić B; Duggan BM; Ajami D; Rebek J; Taylor P Biochem J; 2013 Feb; 450(1):231-42. PubMed ID: 23216060 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of high-affinity phenyltetrahydroisoquinoline aldoximes, linked through anti-triazoles, as reactivators of phosphylated cholinesterases. Maček Hrvat N; Kalisiak J; Šinko G; Radić Z; Sharpless KB; Taylor P; Kovarik Z Toxicol Lett; 2020 Mar; 321():83-89. PubMed ID: 31863869 [TBL] [Abstract][Full Text] [Related]
5. Centrally acting oximes in reactivation of tabun-phosphoramidated AChE. Kovarik Z; Maček N; Sit RK; Radić Z; Fokin VV; Barry Sharpless K; Taylor P Chem Biol Interact; 2013 Mar; 203(1):77-80. PubMed ID: 22960624 [TBL] [Abstract][Full Text] [Related]
6. Reactivation of organophosphate-inhibited serum butyrylcholinesterase by novel substituted phenoxyalkyl pyridinium oximes and traditional oximes. Nichols RH; Chambers JE Toxicology; 2021 Mar; 452():152719. PubMed ID: 33592259 [TBL] [Abstract][Full Text] [Related]
7. Refinement of structural leads for centrally acting oxime reactivators of phosphylated cholinesterases. Radić Z; Sit RK; Kovarik Z; Berend S; Garcia E; Zhang L; Amitai G; Green C; Radić B; Fokin VV; Sharpless KB; Taylor P J Biol Chem; 2012 Apr; 287(15):11798-809. PubMed ID: 22343626 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and in-vitro reactivation screening of imidazolium aldoximes as reactivators of sarin and VX-inhibited human acetylcholinesterase (hAChE). Sharma R; Gupta B; Sahu AK; Acharya J; Satnami ML; Ghosh KK Chem Biol Interact; 2016 Nov; 259(Pt B):85-92. PubMed ID: 27138243 [TBL] [Abstract][Full Text] [Related]
9. Amidine-oximes: reactivators for organophosphate exposure. Kalisiak J; Ralph EC; Zhang J; Cashman JR J Med Chem; 2011 May; 54(9):3319-30. PubMed ID: 21438612 [TBL] [Abstract][Full Text] [Related]
10. Imidazole aldoximes effective in assisting butyrylcholinesterase catalysis of organophosphate detoxification. Sit RK; Fokin VV; Amitai G; Sharpless KB; Taylor P; Radić Z J Med Chem; 2014 Feb; 57(4):1378-89. PubMed ID: 24571195 [TBL] [Abstract][Full Text] [Related]
11. Exploring the physicochemical properties of oxime-reactivation therapeutics for cyclosarin, sarin, tabun, and VX inactivated acetylcholinesterase. Esposito EX; Stouch TR; Wymore T; Madura JD Chem Res Toxicol; 2014 Jan; 27(1):99-110. PubMed ID: 24443939 [TBL] [Abstract][Full Text] [Related]
12. In vitro reactivation of acetylcholinesterase using the oxime K027. Kuca K; Kassa J Vet Hum Toxicol; 2004 Feb; 46(1):15-8. PubMed ID: 14748409 [TBL] [Abstract][Full Text] [Related]
13. Nonquaternary reactivators for organophosphate-inhibited cholinesterases. Kalisiak J; Ralph EC; Cashman JR J Med Chem; 2012 Jan; 55(1):465-74. PubMed ID: 22206546 [TBL] [Abstract][Full Text] [Related]
14. Interactions between xylene-linked carbamoyl bis-pyridinium mono-oximes and organophosphates inhibited-AChE: a kinetic study. Sharma R; Gupta B; Acharya J; Kaushik MP; Ghosh KK Toxicology; 2014 Feb; 316():1-8. PubMed ID: 24345352 [TBL] [Abstract][Full Text] [Related]
15. Enantioseparation, in vitro testing, and structural characterization of triple-binding reactivators of organophosphate-inhibited cholinesterases. Maraković N; Knežević A; Rončević I; Brazzolotto X; Kovarik Z; Šinko G Biochem J; 2020 Aug; 477(15):2771-2790. PubMed ID: 32639532 [TBL] [Abstract][Full Text] [Related]
16. Butyrylcholinesterase inhibited by nerve agents is efficiently reactivated with chlorinated pyridinium oximes. Zorbaz T; Malinak D; Kuca K; Musilek K; Kovarik Z Chem Biol Interact; 2019 Jul; 307():16-20. PubMed ID: 31004594 [TBL] [Abstract][Full Text] [Related]
17. Structure-activity analysis of aging and reactivation of human butyrylcholinesterase inhibited by analogues of tabun. Carletti E; Aurbek N; Gillon E; Loiodice M; Nicolet Y; Fontecilla-Camps JC; Masson P; Thiermann H; Nachon F; Worek F Biochem J; 2009 Jun; 421(1):97-106. PubMed ID: 19368529 [TBL] [Abstract][Full Text] [Related]
18. Potency of several oximes to reactivate human acetylcholinesterase and butyrylcholinesterase inhibited by paraoxon in vitro. Jun D; Musilova L; Kuca K; Kassa J; Bajgar J Chem Biol Interact; 2008 Sep; 175(1-3):421-4. PubMed ID: 18617161 [TBL] [Abstract][Full Text] [Related]
19. Enzyme-kinetic investigation of different sarin analogues reacting with human acetylcholinesterase and butyrylcholinesterase. Bartling A; Worek F; Szinicz L; Thiermann H Toxicology; 2007 Apr; 233(1-3):166-72. PubMed ID: 16904809 [TBL] [Abstract][Full Text] [Related]
20. Cholesterol Oxime Olesoxime Assessed as a Potential Ligand of Human Cholinesterases. Kolić D; Šinko G; Jean L; Chioua M; Dias J; Marco-Contelles J; Kovarik Z Biomolecules; 2024 May; 14(5):. PubMed ID: 38785995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]