These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 29673393)

  • 1. Effects of reinforcing materials on durability of bone cement: in vitro experimental study.
    Karakus O; Karaman O; Gurer B; Saygi B
    J Orthop Surg Res; 2018 Apr; 13(1):94. PubMed ID: 29673393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of additive particles on mechanical, thermal, and cell functioning properties of poly(methyl methacrylate) cement.
    Khandaker M; Vaughan MB; Morris TL; White JJ; Meng Z
    Int J Nanomedicine; 2014; 9():2699-712. PubMed ID: 24920906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers.
    Khaled SM; Charpentier PA; Rizkalla AS
    J Biomater Appl; 2011 Feb; 25(6):515-37. PubMed ID: 20207779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures.
    Kurtz SM; Villarraga ML; Zhao K; Edidin AA
    Biomaterials; 2005 Jun; 26(17):3699-712. PubMed ID: 15621260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a phase change microcapsule to reduce the setting temperature of PMMA bone cement.
    Xia X; Shi R; Huang J; Li Y; Zuo Y; Li J
    J Appl Biomater Funct Mater; 2020; 18():2280800020940279. PubMed ID: 33147094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Augmentation of acrylic bone cement with multiwall carbon nanotubes.
    Marrs B; Andrews R; Rantell T; Pienkowski D
    J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial tensile strength between polymethylmethacrylate-based bioactive bone cements and bone.
    Kamimura M; Tamura J; Shinzato S; Kawanabe K; Neo M; Kokubo T; Nakamura T
    J Biomed Mater Res; 2002 Sep; 61(4):564-71. PubMed ID: 12115446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of bone cements incorporated with montmorillonite.
    Kwon SY; Cho EH; Kim SS
    J Biomed Mater Res B Appl Biomater; 2007 Oct; 83(1):276-84. PubMed ID: 17385224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of oligo(trimethylene carbonate) addition on the stiffness of acrylic bone cement.
    Persson C; López A; Fathali H; Hoess A; Rojas R; Ott MK; Hilborn J; Engqvist H
    Biomatter; 2016; 6(1):e1133394. PubMed ID: 26727581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of chitosan/beta-tricalcium phosphate microspheres as a constituent to PMMA cement.
    Lin LC; Chang SJ; Kuo SM; Chen SF; Kuo CH
    J Mater Sci Mater Med; 2005 Jun; 16(6):567-74. PubMed ID: 15928873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modified PMMA cements for a hydrolysis resistant metal-polymer interface in orthopaedic applications.
    Gbureck U; Grübel S; Thull R; Barralet JE
    Acta Biomater; 2005 Nov; 1(6):671-6. PubMed ID: 16701848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Different Experience Levels of Orthopaedic Residents Effect on Polymethylmethacrylate (PMMA) Bone Cement Mechanical Properties.
    Struemph JM; Chong AC; Wooley PH
    Iowa Orthop J; 2015; 35():193-8. PubMed ID: 26361465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reinforcement of bone cement using zirconia fibers with and without acrylic coating.
    Kotha S; Li C; Schmid S; Mason J
    J Biomed Mater Res A; 2009 Mar; 88(4):898-906. PubMed ID: 18384160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of calcium phosphate cement and polymethyl methacrylate for biological composite bone cements.
    Yang J; Zhang K; Zhang S; Fan J; Guo X; Dong W; Wang S; Chen Y; Yu B
    Med Sci Monit; 2015 Apr; 21():1162-72. PubMed ID: 25904398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. JectOS® versus PMMA vancomycin-loaded cement: The biomechanical and antimicrobial properties.
    Singh VA; Wei CC; Haseeb A; Shanmugam R; Ju CS
    J Orthop Surg (Hong Kong); 2019; 27(1):2309499018822247. PubMed ID: 30798727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads.
    Boger A; Bohner M; Heini P; Schwieger K; Schneider E
    Acta Biomater; 2008 Nov; 4(6):1688-93. PubMed ID: 18678533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioactive bone cements containing nano-sized titania particles for use as bone substitutes.
    Goto K; Tamura J; Shinzato S; Fujibayashi S; Hashimoto M; Kawashita M; Kokubo T; Nakamura T
    Biomaterials; 2005 Nov; 26(33):6496-505. PubMed ID: 15941580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressurization of bioactive bone cement in vitro.
    Fujita H; Iida H; Kawanabe K; Okada Y; Oka M; Masuda T; Kitamura Y; Nakamura T
    J Biomed Mater Res; 1999; 48(1):43-51. PubMed ID: 10029149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical characterization of bone graft substitute ceramic cements.
    Drosos GI; Babourda E; Magnissalis EA; Giatromanolaki A; Kazakos K; Verettas DA
    Injury; 2012 Mar; 43(3):266-71. PubMed ID: 21371707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of barium concentration on the radiopacity and biomechanics of bone cement: experimental study.
    Makita M; Yamakado K; Nakatsuka A; Takaki H; Inaba T; Oshima F; Katayama H; Takeda K
    Radiat Med; 2008 Nov; 26(9):533-8. PubMed ID: 19030961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.