BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 29673525)

  • 1. Optogenetics and Chemogenetics.
    Vlasov K; Van Dort CJ; Solt K
    Methods Enzymol; 2018; 603():181-196. PubMed ID: 29673525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optoanesthesia: Use of Anesthetic Photolabels In Vivo.
    McKinstry-Wu AR; Kelz MB
    Methods Enzymol; 2018; 603():171-180. PubMed ID: 29673524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine.
    Gomez JL; Bonaventura J; Lesniak W; Mathews WB; Sysa-Shah P; Rodriguez LA; Ellis RJ; Richie CT; Harvey BK; Dannals RF; Pomper MG; Bonci A; Michaelides M
    Science; 2017 Aug; 357(6350):503-507. PubMed ID: 28774929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studying brain-regulation of immunity with optogenetics and chemogenetics; A new experimental platform.
    Ben-Shaanan T; Schiller M; Rolls A
    Brain Behav Immun; 2017 Oct; 65():1-8. PubMed ID: 27890661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The first structure-activity relationship studies for designer receptors exclusively activated by designer drugs.
    Chen X; Choo H; Huang XP; Yang X; Stone O; Roth BL; Jin J
    ACS Chem Neurosci; 2015 Mar; 6(3):476-84. PubMed ID: 25587888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavioral and Physiological Effects of a Novel Kappa-Opioid Receptor-Based DREADD in Rats.
    Marchant NJ; Whitaker LR; Bossert JM; Harvey BK; Hope BT; Kaganovsky K; Adhikary S; Prisinzano TE; Vardy E; Roth BL; Shaham Y
    Neuropsychopharmacology; 2016 Jan; 41(2):402-9. PubMed ID: 26019014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deschloroclozapine, a potent and selective chemogenetic actuator enables rapid neuronal and behavioral modulations in mice and monkeys.
    Nagai Y; Miyakawa N; Takuwa H; Hori Y; Oyama K; Ji B; Takahashi M; Huang XP; Slocum ST; DiBerto JF; Xiong Y; Urushihata T; Hirabayashi T; Fujimoto A; Mimura K; English JG; Liu J; Inoue KI; Kumata K; Seki C; Ono M; Shimojo M; Zhang MR; Tomita Y; Nakahara J; Suhara T; Takada M; Higuchi M; Jin J; Roth BL; Minamimoto T
    Nat Neurosci; 2020 Sep; 23(9):1157-1167. PubMed ID: 32632286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of noradrenergic terminals in the reticular thalamus delays arousal from propofol anesthesia in mice.
    Zhang Y; Fu B; Liu C; Yu S; Luo T; Zhang L; Zhou W; Yu T
    FASEB J; 2019 Jun; 33(6):7252-7260. PubMed ID: 30860868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolving Behavioral Output via Chemogenetic Designer Receptors Exclusively Activated by Designer Drugs.
    Burnett CJ; Krashes MJ
    J Neurosci; 2016 Sep; 36(36):9268-82. PubMed ID: 27605603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in optogenetic and chemogenetic methods to study brain circuits in non-human primates.
    Galvan A; Caiola MJ; Albaugh DL
    J Neural Transm (Vienna); 2018 Mar; 125(3):547-563. PubMed ID: 28238201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetic and chemogenetic therapies for epilepsy.
    Walker MC; Kullmann DM
    Neuropharmacology; 2020 May; 168():107751. PubMed ID: 31494141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic Reporters of Neuronal Activity: c-Fos and G-CaMP6.
    Hudson AE
    Methods Enzymol; 2018; 603():197-220. PubMed ID: 29673526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designer receptors enhance memory in a mouse model of Down syndrome.
    Fortress AM; Hamlett ED; Vazey EM; Aston-Jones G; Cass WA; Boger HA; Granholm AC
    J Neurosci; 2015 Jan; 35(4):1343-53. PubMed ID: 25632113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eye-Drops for Activation of DREADDs.
    Keenan WT; Fernandez DC; Shumway LJ; Zhao H; Hattar S
    Front Neural Circuits; 2017; 11():93. PubMed ID: 29218003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined Optogenetic and Chemogenetic Control of Neurons.
    Berglund K; Tung JK; Higashikubo B; Gross RE; Moore CI; Hochgeschwender U
    Methods Mol Biol; 2016; 1408():207-25. PubMed ID: 26965125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of chemogenetics in behavioural neuroscience: receptor variants, targeting approaches and caveats.
    Campbell EJ; Marchant NJ
    Br J Pharmacol; 2018 Apr; 175(7):994-1003. PubMed ID: 29338070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemogenetic manipulation of ventral pallidal neurons impairs acquisition of sign-tracking in rats.
    Chang SE; Todd TP; Bucci DJ; Smith KS
    Eur J Neurosci; 2015 Dec; 42(12):3105-16. PubMed ID: 26469930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The DMCdrive: practical 3D-printable micro-drive system for reliable chronic multi-tetrode recording and optogenetic application in freely behaving rodents.
    Kim H; Brünner HS; Carlén M
    Sci Rep; 2020 Jul; 10(1):11838. PubMed ID: 32678238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Practical Considerations for the Use of DREADD and Other Chemogenetic Receptors to Regulate Neuronal Activity in the Mammalian Brain.
    Aldrin-Kirk P; Björklund T
    Methods Mol Biol; 2019; 1937():59-87. PubMed ID: 30706390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using opioid receptors to expand the chemogenetic and optogenetic toolbox.
    Damez-Werno DM; Kenny PJ
    Neuron; 2015 May; 86(4):853-855. PubMed ID: 25996128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.