These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 29673699)

  • 1. The phosphorylated redox proteome of Chlamydomonas reinhardtii: Revealing novel means for regulation of protein structure and function.
    McConnell EW; Werth EG; Hicks LM
    Redox Biol; 2018 Jul; 17():35-46. PubMed ID: 29673699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Deep Thioredoxome in Chlamydomonas reinhardtii: New Insights into Redox Regulation.
    Pérez-Pérez ME; Mauriès A; Maes A; Tourasse NJ; Hamon M; Lemaire SD; Marchand CH
    Mol Plant; 2017 Aug; 10(8):1107-1125. PubMed ID: 28739495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep learning based approach for prediction of Chlamydomonas reinhardtii phosphorylation sites.
    Thapa N; Chaudhari M; Iannetta AA; White C; Roy K; Newman RH; Hicks LM; Kc DB
    Sci Rep; 2021 Jun; 11(1):12550. PubMed ID: 34131195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic light- and acetate-dependent regulation of the proteome and lysine acetylome of Chlamydomonas.
    Füßl M; König AC; Eirich J; Hartl M; Kleinknecht L; Bohne AV; Harzen A; Kramer K; Leister D; Nickelsen J; Finkemeier I
    Plant J; 2022 Jan; 109(1):261-277. PubMed ID: 34709689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo targets of S-thiolation in Chlamydomonas reinhardtii.
    Michelet L; Zaffagnini M; Vanacker H; Le Maréchal P; Marchand C; Schroda M; Lemaire SD; Decottignies P
    J Biol Chem; 2008 Aug; 283(31):21571-8. PubMed ID: 18534986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-Free Quantitative Phosphoproteomics for Algae.
    Ford MM; Lawrence SR; Werth EG; McConnell EW; Hicks LM
    Methods Mol Biol; 2020; 2139():197-211. PubMed ID: 32462588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Global Profile of Reversible and Irreversible Cysteine Redox Post-Translational Modifications During Myocardial Ischemia/Reperfusion Injury and Antioxidant Intervention.
    Rookyard AW; Paulech J; Thyssen S; Liddy KA; Puckeridge M; Li DK; White MY; Cordwell SJ
    Antioxid Redox Signal; 2021 Jan; 34(1):11-31. PubMed ID: 32729339
    [No Abstract]   [Full Text] [Related]  

  • 8. Quantifying reversible oxidation of protein thiols in photosynthetic organisms.
    Slade WO; Werth EG; McConnell EW; Alvarez S; Hicks LM
    J Am Soc Mass Spectrom; 2015 Apr; 26(4):631-40. PubMed ID: 25698223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of TOR in
    Ford MM; Smythers AL; McConnell EW; Lowery SC; Kolling DRJ; Hicks LM
    Cells; 2019 Sep; 8(10):. PubMed ID: 31569396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome-wide light/dark modulation of thiol oxidation in cyanobacteria revealed by quantitative site-specific redox proteomics.
    Guo J; Nguyen AY; Dai Z; Su D; Gaffrey MJ; Moore RJ; Jacobs JM; Monroe ME; Smith RD; Koppenaal DW; Pakrasi HB; Qian WJ
    Mol Cell Proteomics; 2014 Dec; 13(12):3270-85. PubMed ID: 25118246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the phosphoproteome of Chlamydomonas reinhardtii provides new insights into various cellular pathways.
    Wagner V; Gessner G; Heiland I; Kaminski M; Hawat S; Scheffler K; Mittag M
    Eukaryot Cell; 2006 Mar; 5(3):457-68. PubMed ID: 16524901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutathionylation in the photosynthetic model organism Chlamydomonas reinhardtii: a proteomic survey.
    Zaffagnini M; Bedhomme M; Groni H; Marchand CH; Puppo C; Gontero B; Cassier-Chauvat C; Decottignies P; Lemaire SD
    Mol Cell Proteomics; 2012 Feb; 11(2):M111.014142. PubMed ID: 22122882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography.
    Huang H; Haar Petersen M; Ibañez-Vea M; Lassen PS; Larsen MR; Palmisano G
    Mol Cell Proteomics; 2016 Oct; 15(10):3282-3296. PubMed ID: 27281782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative shotgun proteomics using a uniform ¹⁵N-labeled standard to monitor proteome dynamics in time course experiments reveals new insights into the heat stress response of Chlamydomonas reinhardtii.
    Mühlhaus T; Weiss J; Hemme D; Sommer F; Schroda M
    Mol Cell Proteomics; 2011 Sep; 10(9):M110.004739. PubMed ID: 21610104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Resolution Crystal Structure of Chloroplastic Ribose-5-Phosphate Isomerase from
    Le Moigne T; Crozet P; Lemaire SD; Henri J
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33096784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiol redox proteomics: Characterization of thiol-based post-translational modifications.
    Li X; Gluth A; Zhang T; Qian WJ
    Proteomics; 2023 Jul; 23(13-14):e2200194. PubMed ID: 37248656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the global kinome and phosphoproteome in Chlamydomonas reinhardtii via sequential enrichment and quantitative proteomics.
    Werth EG; McConnell EW; Gilbert TS; Couso Lianez I; Perez CA; Manley CK; Graves LM; Umen JG; Hicks LM
    Plant J; 2017 Jan; 89(2):416-426. PubMed ID: 27671103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CP12-mediated protection of Calvin-Benson cycle enzymes from oxidative stress.
    Marri L; Thieulin-Pardo G; Lebrun R; Puppo R; Zaffagnini M; Trost P; Gontero B; Sparla F
    Biochimie; 2014 Feb; 97():228-37. PubMed ID: 24211189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted proteomics for Chlamydomonas reinhardtii combined with rapid subcellular protein fractionation, metabolomics and metabolic flux analyses.
    Wienkoop S; Weiss J; May P; Kempa S; Irgang S; Recuenco-Munoz L; Pietzke M; Schwemmer T; Rupprecht J; Egelhofer V; Weckwerth W
    Mol Biosyst; 2010 Jun; 6(6):1018-31. PubMed ID: 20358043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TiCPG - a strategy for the simultaneous enrichment of reversibly modified cysteine peptides, phosphopeptides, and sialylated N-Glycopeptides to study cytokines stimulated beta-cells.
    Huang H; Drici L; Lassen PS; Palmisano G; Larsen MR
    J Proteomics; 2023 Feb; 273():104796. PubMed ID: 36538968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.