These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 29673949)

  • 1. Comparison of experimental and calculated shielding factors for modular buildings in a radioactive fallout scenario.
    Hinrichsen Y; Finck R; Östlund K; Rääf C; Andersson KG
    J Environ Radioact; 2018 Sep; 189():146-155. PubMed ID: 29673949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introducing the concept of the isodose for optimisation of decontamination activities in a radioactive fallout scenario.
    Hinrichsen Y; Finck R; Rääf C; Andersson KG
    J Radiol Prot; 2018 Dec; 38(4):1293-1310. PubMed ID: 30152408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Personal monitor glass badge: theoretical dosemeter response calculated with the Monte Carlo transport code MCNPX.
    Hocine N; Donadille L; Huet C; Itié C; Clairand I
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):231-3. PubMed ID: 21335330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloud immersion building shielding factors for US residential structures.
    Dickson ED; Hamby DM
    J Radiol Prot; 2014 Dec; 34(4):853-71. PubMed ID: 25340542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An analytical approach to γ-ray self-shielding effects for radioactive bodies encountered nuclear decommissioning scenarios.
    Gamage KA; Joyce MJ
    Appl Radiat Isot; 2011 Oct; 69(10):1521-32. PubMed ID: 21723136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of an industrial environment: external dose calculations based on Monte Carlo simulations of photon transport.
    Kis Z; Eged K; Voigt G; Meckbach R; Müller H
    Health Phys; 2004 Feb; 86(2):161-73. PubMed ID: 14744050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contaminant deposition building shielding factors for US residential structures.
    Dickson ED; Hamby DM; Eckerman KF
    J Radiol Prot; 2015 Jun; 35(2):317-41. PubMed ID: 25859888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improved method for the non-destructive characterization of radioactive waste by gamma scanning.
    Bai YF; Mauerhofer E; Wang DZ; Odoj R
    Appl Radiat Isot; 2009 Oct; 67(10):1897-903. PubMed ID: 19540769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo characterization and benchmarking of extended range REM meters for its application in shielding and radiation area monitoring in Compact Proton Therapy Centers (CPTC).
    García-Fernández GF; Cevallos-Robalino LE; García-Baonza R; Gallego E; Vega-Carrillo HR; Guzman-García KA; Lorente A; Ibáñez S
    Appl Radiat Isot; 2019 Oct; 152():115-126. PubMed ID: 31295682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of the radioactive fallout in the center of Asia (Russia) following the Fukushima Nuclear Accident.
    Bolsunovsky A; Dementyev D
    J Environ Radioact; 2011 Nov; 102(11):1062-4. PubMed ID: 21745703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of reduction factors by buildings for gamma radiation from radiocaesium deposited on the ground due to fallout.
    Yoshida-Ohuchi H; Matsuda N; Saito K
    J Environ Radioact; 2018 Jul; 187():32-39. PubMed ID: 29494937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gamma shielding factor for typical houses in Brazil.
    Salinas IC; Conti CC; Rochedo ER; Lopes RT
    Radiat Prot Dosimetry; 2006; 121(4):420-4. PubMed ID: 16782986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Building protection- and building shielding-factors for environmental exposure to radionuclides and monoenergetic photon emissions.
    Dickson ED; Hamby DM
    J Radiol Prot; 2016 Sep; 36(3):579-615. PubMed ID: 27460970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early in situ measurement of radioactive fallout in Fukushima city due to Fukushima Daiichi nuclear accident.
    Takada M; Suzuki T
    Radiat Prot Dosimetry; 2013 Jul; 155(2):181-96. PubMed ID: 23209185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the air kerma response of spherical ionization chambers for unfolded pulse height distributions of (60)Co and (137)Cs using the EGS4 Monte Carlo code.
    Chun KJ; Yoo GH
    J Radiat Res; 2007 Sep; 48(5):385-95. PubMed ID: 17675797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional shielding calculations for the IFMIF neutron source using a coupled Monte Carlo/Deterministic computational scheme.
    Chen Y; Fischer U; Simakov SP; Wasastjerna F
    Radiat Prot Dosimetry; 2005; 115(1-4):573-9. PubMed ID: 16381788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling the external radiation exposure from the Chernobyl fallout using data from the Swedish municipality measurement system.
    Jönsson M; Tondel M; Isaksson M; Finck R; Wålinder R; Mamour A; Rääf C
    J Environ Radioact; 2017 Nov; 178-179():16-27. PubMed ID: 28750352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a new ionisation chamber, for HP(10) measurement, using Monte-Carlo simulation and experimental methods.
    Silva H; Cardoso J; Oliveira C
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):168-72. PubMed ID: 21208934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tenth value layers for 60Co gamma rays and for 4, 6, 10, 15, and 18 MV x rays in concrete for beams of cone angles between 0 degrees and 14 degrees calculated by Monte Carlo simulation.
    Jaradat AK; Biggs PJ
    Health Phys; 2007 May; 92(5):456-63. PubMed ID: 17429304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MCNPX vs. DORT for SNS shielding design studies.
    Popova II
    Radiat Prot Dosimetry; 2005; 115(1-4):559-63. PubMed ID: 16381785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.