BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

522 related articles for article (PubMed ID: 29673973)

  • 1. Using agro-industrial wastes for the cultivation of microalgae and duckweeds: Contamination risks and biomass safety concerns.
    Markou G; Wang L; Ye J; Unc A
    Biotechnol Adv; 2018; 36(4):1238-1254. PubMed ID: 29673973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries.
    Gupta S; Pawar SB; Pandey RA
    Sci Total Environ; 2019 Oct; 687():1107-1126. PubMed ID: 31412448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cultivation of the macrophyte Lemna minor and the microalgae Chlorella sorokiniana in thermal mineral waters: Biomass characteristics, radioisotopes and heavy metals content.
    Katsara A; Zkeri E; Aloupi M; Pappa FK; Matsoukas C; Stasinakis AS
    Environ Pollut; 2024 May; 349():123881. PubMed ID: 38580063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutrients recycling and biomass production from Chlorella pyrenoidosa culture using anaerobic food processing wastewater in a pilot-scale tubular photobioreactor.
    Tan XB; Wan XP; Yang LB; Wang X; Meng J; Jiang MJ; Pi HJ
    Chemosphere; 2021 May; 270():129459. PubMed ID: 33388504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microalgae-based removal of pollutants from wastewaters: Occurrence, toxicity and circular economy.
    Bhatt P; Bhandari G; Bhatt K; Simsek H
    Chemosphere; 2022 Nov; 306():135576. PubMed ID: 35803375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valorising nutrient-rich digestate: Dilution, settlement and membrane filtration processing for optimisation as a waste-based media for microalgal cultivation.
    Fernandes F; Silkina A; Fuentes-Grünewald C; Wood EE; Ndovela VLS; Oatley-Radcliffe DL; Lovitt RW; Llewellyn CA
    Waste Manag; 2020 Dec; 118():197-208. PubMed ID: 32892096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circular economy approaches for the production of high-value polysaccharides from microalgal biomass grown on industrial fish processing wastewater: A review.
    Rifna EJ; Rajauria G; Dwivedi M; Tiwari BK
    Int J Biol Macromol; 2024 Jan; 254(Pt 3):126887. PubMed ID: 37709230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural pigments from microalgae grown in industrial wastewater.
    Arashiro LT; Boto-Ordóñez M; Van Hulle SWH; Ferrer I; Garfí M; Rousseau DPL
    Bioresour Technol; 2020 May; 303():122894. PubMed ID: 32032937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An overview of microalgae biomass as a sustainable aquaculture feed ingredient: food security and circular economy.
    Ahmad A; W Hassan S; Banat F
    Bioengineered; 2022 Apr; 13(4):9521-9547. PubMed ID: 35387561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pollutants from fish feeding recycled for microalgae production as sustainable, renewable and valuable products.
    Chan H
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1474-1486. PubMed ID: 30430445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of the economy of heterotrophic microalgae- and insect-based food waste utilization processes.
    Pleissner D; Smetana S
    Waste Manag; 2020 Feb; 102():198-203. PubMed ID: 31678806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards a circular economy: A novel microalgal two-step growth approach to treat excess nutrients from digestate and to produce biomass for animal feed.
    Fuentes-Grünewald C; Ignacio Gayo-Peláez J; Ndovela V; Wood E; Vijay Kapoore R; Anne Llewellyn C
    Bioresour Technol; 2021 Jan; 320(Pt A):124349. PubMed ID: 33181476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoremediation of agriculture runoff by filamentous algae poly-culture for biomethane production, and nutrient recovery for secondary cultivation of lipid generating microalgae.
    Bohutskyi P; Chow S; Ketter B; Fung Shek C; Yacar D; Tang Y; Zivojnovich M; Betenbaugh MJ; Bouwer EJ
    Bioresour Technol; 2016 Dec; 222():294-308. PubMed ID: 27728832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment.
    Smetana S; Sandmann M; Rohn S; Pleissner D; Heinz V
    Bioresour Technol; 2017 Dec; 245(Pt A):162-170. PubMed ID: 28892686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Valorization of agro-industrial wastes into polyhydroxyalkanoates-rich single-cell proteins to enable a circular waste-to-feed economy.
    Asiri F; Chu KH
    Chemosphere; 2022 Dec; 309(Pt 1):136660. PubMed ID: 36191769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microalgal and duckweed based constructed wetlands for swine wastewater treatment: A review.
    Li X; Wu S; Yang C; Zeng G
    Bioresour Technol; 2020 Dec; 318():123858. PubMed ID: 32732065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Food waste as nutrient source in heterotrophic microalgae cultivation.
    Pleissner D; Lam WC; Sun Z; Lin CS
    Bioresour Technol; 2013 Jun; 137():139-46. PubMed ID: 23587816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of Heavy Metals and Other Inorganic Contaminants on the Productivity of Microalgae.
    Napan K; Hess D; McNeil B; Quinn JC
    J Vis Exp; 2015 Jul; (101):e52936. PubMed ID: 26274060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High variability in nutritional value and safety of commercially available Chlorella and Spirulina biomass indicates the need for smart production strategies.
    Muys M; Sui Y; Schwaiger B; Lesueur C; Vandenheuvel D; Vermeir P; Vlaeminck SE
    Bioresour Technol; 2019 Mar; 275():247-257. PubMed ID: 30594834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.