BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 29674035)

  • 1. DNase I enzyme-aided fluorescence signal amplification based on graphene oxide-DNA aptamer interactions for colorectal cancer exosome detection.
    Wang H; Chen H; Huang Z; Li T; Deng A; Kong J
    Talanta; 2018 Jul; 184():219-226. PubMed ID: 29674035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fluorometric aptasensor for patulin based on the use of magnetized graphene oxide and DNase I-assisted target recycling amplification.
    Ma L; Guo T; Pan S; Zhang Y
    Mikrochim Acta; 2018 Oct; 185(10):487. PubMed ID: 30276550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ExoAPP: Exosome-Oriented, Aptamer Nanoprobe-Enabled Surface Proteins Profiling and Detection.
    Jin D; Yang F; Zhang Y; Liu L; Zhou Y; Wang F; Zhang GJ
    Anal Chem; 2018 Dec; 90(24):14402-14411. PubMed ID: 30350954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fluorescent aptasensor based on single oligonucleotide-mediated isothermal quadratic amplification and graphene oxide fluorescence quenching for ultrasensitive protein detection.
    Xu J; Shi M; Huang H; Hu K; Chen W; Huang Y; Zhao S
    Analyst; 2018 Aug; 143(16):3918-3925. PubMed ID: 30043777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction.
    Sun AL; Zhang YF; Sun GP; Wang XN; Tang D
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):659-665. PubMed ID: 26707001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nicking enzyme and graphene oxide-based dual signal amplification for ultrasensitive aptamer-based fluorescence polarization assays.
    Huang Y; Liu X; Zhang L; Hu K; Zhao S; Fang B; Chen ZF; Liang H
    Biosens Bioelectron; 2015 Jan; 63():178-184. PubMed ID: 25087158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene oxide based fluorescent aptasensor for adenosine deaminase detection using adenosine as the substrate.
    Xing XJ; Liu XG; Yue-He ; Luo QY; Tang HW; Pang DW
    Biosens Bioelectron; 2012; 37(1):61-7. PubMed ID: 22613226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universal Ti
    Zhang Q; Wang F; Zhang H; Zhang Y; Liu M; Liu Y
    Anal Chem; 2018 Nov; 90(21):12737-12744. PubMed ID: 30350604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A universal aptasensing platform based on cryonase-assisted signal amplification and graphene oxide induced quenching of the fluorescence of labeled nucleic acid probes: application to the detection of theophylline and ATP.
    Lou YF; Peng YB; Luo X; Yang Z; Wang R; Sun D; Li L; Tan Y; Huang J; Cui L
    Mikrochim Acta; 2019 Jul; 186(8):494. PubMed ID: 31267250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Template-free multiple signal amplification for highly sensitive detection of cancer cell-derived exosomes.
    Wang L; Deng Y; Huang Y; Wei J; Ma J; Li G
    Chem Commun (Camb); 2021 Sep; 57(68):8508-8511. PubMed ID: 34351331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insulin-binding aptamer-conjugated graphene oxide for insulin detection.
    Pu Y; Zhu Z; Han D; Liu H; Liu J; Liao J; Zhang K; Tan W
    Analyst; 2011 Oct; 136(20):4138-40. PubMed ID: 21874167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terminal deoxynucleotidyl transferase based signal amplification for enzyme-linked aptamer-sorbent assay of colorectal cancer exosomes.
    Huang Z; Lin Q; Ye X; Yang B; Zhang R; Chen H; Weng W; Kong J
    Talanta; 2020 Oct; 218():121089. PubMed ID: 32797865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid Fluorescent Detection of Enterotoxigenic Escherichia coli (ETEC) K88 Based on Graphene Oxide-Dependent Nanoquencher and Klenow Fragment-Triggered Target Cyclic Amplification.
    Ling M; Peng Z; Cheng L; Deng L
    Appl Spectrosc; 2015 Oct; 69(10):1175-81. PubMed ID: 26449811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorometric graphene oxide-based detection of Salmonella enteritis using a truncated DNA aptamer.
    Chinnappan R; AlAmer S; Eissa S; Rahamn AA; Abu Salah KM; Zourob M
    Mikrochim Acta; 2017 Dec; 185(1):61. PubMed ID: 29594712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasensitive Detection of Exosomes by Target-Triggered Three-Dimensional DNA Walking Machine and Exonuclease III-Assisted Electrochemical Ratiometric Biosensing.
    Zhao L; Sun R; He P; Zhang X
    Anal Chem; 2019 Nov; 91(22):14773-14779. PubMed ID: 31660712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A self-assembling RNA aptamer-based graphene oxide sensor for the turn-on detection of theophylline in serum.
    Ling K; Jiang H; Li Y; Tao X; Qiu C; Li FR
    Biosens Bioelectron; 2016 Dec; 86():8-13. PubMed ID: 27318104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of a DNA-AuNP-based satellite network for exosome analysis.
    Gao ML; Yin BC; Ye BC
    Analyst; 2019 Oct; 144(20):5996-6003. PubMed ID: 31536072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A label-free and high-efficient GO-based aptasensor for cancer cells based on cyclic enzymatic signal amplification.
    Xiao K; Liu J; Chen H; Zhang S; Kong J
    Biosens Bioelectron; 2017 May; 91():76-81. PubMed ID: 27992802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Sensitive Electrochemical Detection of Tumor Exosomes Based on Aptamer Recognition-Induced Multi-DNA Release and Cyclic Enzymatic Amplification.
    Dong H; Chen H; Jiang J; Zhang H; Cai C; Shen Q
    Anal Chem; 2018 Apr; 90(7):4507-4513. PubMed ID: 29512380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An aptamer-based new method for competitive fluorescence detection of exosomes.
    Yu X; He L; Pentok M; Yang H; Yang Y; Li Z; He N; Deng Y; Li S; Liu T; Chen X; Luo H
    Nanoscale; 2019 Sep; 11(33):15589-15595. PubMed ID: 31403149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.