These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29674064)

  • 61. Assessment of novel tobacco heating product THP1.0. Part 6: A comparative in vitro study using contemporary screening approaches.
    Taylor M; Thorne D; Carr T; Breheny D; Walker P; Proctor C; Gaça M
    Regul Toxicol Pharmacol; 2018 Mar; 93():62-70. PubMed ID: 29080849
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Non-Targeted Analysis Using Gas Chromatography-Mass Spectrometry for Evaluation of Chemical Composition of E-Vapor Products.
    Shah NH; Noe MR; Agnew-Heard KA; Pithawalla YB; Gardner WP; Chakraborty S; McCutcheon N; Grisevich H; Hurst TJ; Morton MJ; Melvin MS; Miller Iv JH
    Front Chem; 2021; 9():742854. PubMed ID: 34660534
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Multi-omics systems toxicology study of mouse lung assessing the effects of aerosols from two heat-not-burn tobacco products and cigarette smoke.
    Titz B; Szostak J; Sewer A; Phillips B; Nury C; Schneider T; Dijon S; Lavrynenko O; Elamin A; Guedj E; Tsin Wong E; Lebrun S; Vuillaume G; Kondylis A; Gubian S; Cano S; Leroy P; Keppler B; Ivanov NV; Vanscheeuwijck P; Martin F; Peitsch MC; Hoeng J
    Comput Struct Biotechnol J; 2020; 18():1056-1073. PubMed ID: 32419906
    [TBL] [Abstract][Full Text] [Related]  

  • 64. In vitro RNA-seq-based toxicogenomics assessment shows reduced biological effect of tobacco heating products when compared to cigarette smoke.
    Haswell LE; Corke S; Verrastro I; Baxter A; Banerjee A; Adamson J; Jaunky T; Proctor C; Gaça M; Minet E
    Sci Rep; 2018 Feb; 8(1):1145. PubMed ID: 29402904
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A 90-day OECD TG 413 rat inhalation study with systems toxicology endpoints demonstrates reduced exposure effects of the aerosol from the carbon heated tobacco product version 1.2 (CHTP1.2) compared with cigarette smoke. II. Systems toxicology assessment.
    Titz B; Kogel U; Martin F; Schlage WK; Xiang Y; Nury C; Dijon S; Baumer K; Peric D; Bornand D; Dulize R; Phillips B; Leroy P; Vuillaume G; Lebrun S; Elamin A; Guedj E; Trivedi K; Ivanov NV; Vanscheeuwijck P; Peitsch MC; Hoeng J
    Food Chem Toxicol; 2018 May; 115():284-301. PubMed ID: 29545142
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Simple Determination of Gaseous and Particulate Compounds Generated from Heated Tobacco Products.
    Uchiyama S; Noguchi M; Takagi N; Hayashida H; Inaba Y; Ogura H; Kunugita N
    Chem Res Toxicol; 2018 Jul; 31(7):585-593. PubMed ID: 29863851
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Development of a novel method to measure material surface staining by cigarette, e-cigarette or tobacco heating product aerosols.
    Dalrymple A; Badrock TC; Terry A; Bean EJ; Barber M; Hall PJ; Coburn S; McAughey J; Murphy J
    Heliyon; 2020 Sep; 6(9):e05012. PubMed ID: 32995648
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Novel method to analysis benzo[a]pyrene in filter by liquid chromatography/tandem mass spectrometry: application to assess mouth level benzo[a]pyrene exposure.
    Zhang X; Hou H; Shi L; Liu Y; Wang A; Hu Q
    Rapid Commun Mass Spectrom; 2014 Jul; 28(13):1468-72. PubMed ID: 24861596
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Evaluation of the Tobacco Heating System 2.2. Part 7: Systems toxicological assessment of a mentholated version revealed reduced cellular and molecular exposure effects compared with mentholated and non-mentholated cigarette smoke.
    Kogel U; Titz B; Schlage WK; Nury C; Martin F; Oviedo A; Lebrun S; Elamin A; Guedj E; Trivedi K; Ivanov NV; Vanscheeuwijck P; Peitsch MC; Hoeng J
    Regul Toxicol Pharmacol; 2016 Nov; 81 Suppl 2():S123-S138. PubMed ID: 27818347
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Characterisation of the borgwaldt LM4E system for in vitro exposures to undiluted aerosols from next generation tobacco and nicotine products (NGPs).
    Adamson J; Jaunky T; Thorne D; Gaça MD
    Food Chem Toxicol; 2018 Mar; 113():337-344. PubMed ID: 29421647
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Assessment of toxicological validity using tobacco emission condensates: A comparative analysis of emissions and condensates from 3R4F reference cigarettes and heated tobacco products.
    An YJ; Kim YH
    Environ Int; 2024 Mar; 185():108502. PubMed ID: 38368717
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Evaluation of the Tobacco Heating System 2.2. Part 3: Influence of the tobacco blend on the formation of harmful and potentially harmful constituents of the Tobacco Heating System 2.2 aerosol.
    Schaller JP; Pijnenburg JPM; Ajithkumar A; Tricker AR
    Regul Toxicol Pharmacol; 2016 Nov; 81 Suppl 2():S48-S58. PubMed ID: 27793747
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Chemical analysis of cigarette smoke particulate generated in the MSB-01 in vitro whole smoke exposure system.
    Scian MJ; Oldham MJ; Miller JH; Kane DB; Edmiston JS; McKinney WJ
    Inhal Toxicol; 2009 Oct; 21(12):1040-52. PubMed ID: 19772483
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Development of an in vitro cytotoxicity model for aerosol exposure using 3D reconstructed human airway tissue; application for assessment of e-cigarette aerosol.
    Neilson L; Mankus C; Thorne D; Jackson G; DeBay J; Meredith C
    Toxicol In Vitro; 2015 Oct; 29(7):1952-62. PubMed ID: 26176715
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A method for assessment of the genotoxicity of mainstream cigarette-smoke by use of the bacterial reverse-mutation assay and an aerosol-based exposure system.
    Kilford J; Thorne D; Payne R; Dalrymple A; Clements J; Meredith C; Dillon D
    Mutat Res Genet Toxicol Environ Mutagen; 2014 Jul; 769():20-8. PubMed ID: 25344108
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effects of cigarette smoke, cessation and switching to a candidate modified risk tobacco product on the liver in Apoe -/- mice--a systems toxicology analysis.
    Lo Sasso G; Titz B; Nury C; Boué S; Phillips B; Belcastro V; Schneider T; Dijon S; Baumer K; Peric D; Dulize R; Elamin A; Guedj E; Buettner A; Leroy P; Kleinhans S; Vuillaume G; Veljkovic E; Ivanov NV; Martin F; Vanscheeuwijck P; Peitsch MC; Hoeng J
    Inhal Toxicol; 2016 Apr; 28(5):226-40. PubMed ID: 27027324
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Evaluation of two derivatization reagents for the determination by LC-MS/MS of ammonia in cigarette mainstream smoke.
    Mottier N; Jeanneret F
    J Agric Food Chem; 2011 Jan; 59(1):92-7. PubMed ID: 21142102
    [TBL] [Abstract][Full Text] [Related]  

  • 78. In vitro micronucleus assay for cigarette smoke using a whole smoke exposure system: a comparison of smoking regimens.
    Okuwa K; Tanaka M; Fukano Y; Nara H; Nishijima Y; Nishino T
    Exp Toxicol Pathol; 2010 Jul; 62(4):433-40. PubMed ID: 19560909
    [TBL] [Abstract][Full Text] [Related]  

  • 79. On the deposition of volatiles and semivolatiles from cigarette smoke aerosols: relative rates of transfer of nicotine and ammonia from particles to the gas phase.
    Seeman JI; Lipowicz PJ; Piadé JJ; Poget L; Sanders EB; Snyder JP; Trowbridge CG
    Chem Res Toxicol; 2004 Aug; 17(8):1020-37. PubMed ID: 15310234
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Tobacco heating system has less impact on bone metabolism than cigarette smoke.
    Weng W; Bovard D; Zanetti F; Ehnert S; Braun B; Uynuk-Ool T; Histing T; Hoeng J; Nussler AK; Aspera-Werz RH
    Food Chem Toxicol; 2023 Mar; 173():113637. PubMed ID: 36708864
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.