BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29674647)

  • 1. Oxygen-doped carbon nanotubes for near-infrared fluorescent labels and imaging probes.
    Iizumi Y; Yudasaka M; Kim J; Sakakita H; Takeuchi T; Okazaki T
    Sci Rep; 2018 Apr; 8(1):6272. PubMed ID: 29674647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delayed Increase in Near-Infrared Fluorescence in Cultured Murine Cancer Cells Labeled with Oxygen-Doped Single-Walled Carbon Nanotubes.
    Sekiyama S; Umezawa M; Iizumi Y; Ube T; Okazaki T; Kamimura M; Soga K
    Langmuir; 2019 Jan; 35(3):831-837. PubMed ID: 30585494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and Biodistribution Analysis of Oxygen-Doped Single-Walled Carbon Nanotubes Used as in Vivo Fluorescence Imaging Probes.
    Takeuchi T; Iizumi Y; Yudasaka M; Kizaka-Kondoh S; Okazaki T
    Bioconjug Chem; 2019 May; 30(5):1323-1330. PubMed ID: 30848886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A convenient method of attaching fluorescent dyes on single-walled carbon nanotubes pre-wrapped with DNA molecules.
    Tomura A; Umemura K
    Anal Biochem; 2018 Apr; 547():1-6. PubMed ID: 29428378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes.
    Ghosh S; Bachilo SM; Simonette RA; Beckingham KM; Weisman RB
    Science; 2010 Dec; 330(6011):1656-9. PubMed ID: 21109631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-walled carbon nanotubes as near-infrared fluorescent probes for bio-inspired supramolecular self-assembled hydrogels.
    Kleiner S; Wulf V; Bisker G
    J Colloid Interface Sci; 2024 Sep; 670():439-448. PubMed ID: 38772260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors.
    Kruss S; Landry MP; Vander Ende E; Lima BM; Reuel NF; Zhang J; Nelson J; Mu B; Hilmer A; Strano M
    J Am Chem Soc; 2014 Jan; 136(2):713-24. PubMed ID: 24354436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunoassay with single-walled carbon nanotubes as near-infrared fluorescent labels.
    Iizumi Y; Okazaki T; Ikehara Y; Ogura M; Fukata S; Yudasaka M
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7665-70. PubMed ID: 23927721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defect-Induced Near-Infrared Photoluminescence of Single-Walled Carbon Nanotubes Treated with Polyunsaturated Fatty Acids.
    Chiu CF; Saidi WA; Kagan VE; Star A
    J Am Chem Soc; 2017 Apr; 139(13):4859-4865. PubMed ID: 28288512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creating fluorescent quantum defects in carbon nanotubes using hypochlorite and light.
    Lin CW; Bachilo SM; Zheng Y; Tsedev U; Huang S; Weisman RB; Belcher AM
    Nat Commun; 2019 Jun; 10(1):2874. PubMed ID: 31253811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent sp
    Mandal AK; Wu X; Ferreira JS; Kim M; Powell LR; Kwon H; Groc L; Wang Y; Cognet L
    Sci Rep; 2020 Mar; 10(1):5286. PubMed ID: 32210295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum defects as versatile anchors for carbon nanotube functionalization.
    Mann FA; Galonska P; Herrmann N; Kruss S
    Nat Protoc; 2022 Mar; 17(3):727-747. PubMed ID: 35110739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring Enzyme Activity Using Near-Infrared Fluorescent Single-Walled Carbon Nanotubes.
    Basu S; Hendler-Neumark A; Bisker G
    ACS Sens; 2024 May; 9(5):2237-2253. PubMed ID: 38669585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of single-walled carbon nanotubes functionalized with platinum nanoparticles to sense breast cancer cells in 4T1 model to X-ray radiation.
    Aghaei A; Shaterian M; Danafar H; Likozar B; Šuligoj A; Gyergyek S
    Mikrochim Acta; 2023 Apr; 190(5):184. PubMed ID: 37069457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Walled Carbon Nanotubes as Fluorescent Probes for Monitoring the Self-Assembly and Morphology of Peptide/Polymer Hybrid Hydrogels.
    Wulf V; Bisker G
    Nano Lett; 2022 Nov; 22(22):9205-9214. PubMed ID: 36259520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme-catalyzed oxidation facilitates the return of fluorescence for single-walled carbon nanotubes.
    Chiu CF; Barth BA; Kotchey GP; Zhao Y; Gogick KA; Saidi WA; Petoud S; Star A
    J Am Chem Soc; 2013 Sep; 135(36):13356-64. PubMed ID: 23672715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosensing with Fluorescent Carbon Nanotubes.
    Ackermann J; Metternich JT; Herbertz S; Kruss S
    Angew Chem Int Ed Engl; 2022 Apr; 61(18):e202112372. PubMed ID: 34978752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel covalent approach to bio-conjugate silver coated single walled carbon nanotubes with antimicrobial peptide.
    Chaudhari AA; Ashmore D; Nath SD; Kate K; Dennis V; Singh SR; Owen DR; Palazzo C; Arnold RD; Miller ME; Pillai SR
    J Nanobiotechnology; 2016 Jul; 14(1):58. PubMed ID: 27412259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-Infrared Fluorescence Lifetime Imaging of Biomolecules with Carbon Nanotubes.
    Sistemich L; Galonska P; Stegemann J; Ackermann J; Kruss S
    Angew Chem Int Ed Engl; 2023 Jun; 62(24):e202300682. PubMed ID: 36891826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-Infrared Photoluminescence of Carbon Nanotubes Powered by Biochemical Reactions of Luciferin/Luciferase.
    Tanaka T; Higuchi M; Tsuzuki M; Hiratsuka A; Kataura H
    J Phys Chem Lett; 2023 Jun; 14(25):5955-5959. PubMed ID: 37345759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.