These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29674647)

  • 1. Oxygen-doped carbon nanotubes for near-infrared fluorescent labels and imaging probes.
    Iizumi Y; Yudasaka M; Kim J; Sakakita H; Takeuchi T; Okazaki T
    Sci Rep; 2018 Apr; 8(1):6272. PubMed ID: 29674647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delayed Increase in Near-Infrared Fluorescence in Cultured Murine Cancer Cells Labeled with Oxygen-Doped Single-Walled Carbon Nanotubes.
    Sekiyama S; Umezawa M; Iizumi Y; Ube T; Okazaki T; Kamimura M; Soga K
    Langmuir; 2019 Jan; 35(3):831-837. PubMed ID: 30585494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and Biodistribution Analysis of Oxygen-Doped Single-Walled Carbon Nanotubes Used as in Vivo Fluorescence Imaging Probes.
    Takeuchi T; Iizumi Y; Yudasaka M; Kizaka-Kondoh S; Okazaki T
    Bioconjug Chem; 2019 May; 30(5):1323-1330. PubMed ID: 30848886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A convenient method of attaching fluorescent dyes on single-walled carbon nanotubes pre-wrapped with DNA molecules.
    Tomura A; Umemura K
    Anal Biochem; 2018 Apr; 547():1-6. PubMed ID: 29428378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes.
    Ghosh S; Bachilo SM; Simonette RA; Beckingham KM; Weisman RB
    Science; 2010 Dec; 330(6011):1656-9. PubMed ID: 21109631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-walled carbon nanotubes as near-infrared fluorescent probes for bio-inspired supramolecular self-assembled hydrogels.
    Kleiner S; Wulf V; Bisker G
    J Colloid Interface Sci; 2024 Sep; 670():439-448. PubMed ID: 38772260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors.
    Kruss S; Landry MP; Vander Ende E; Lima BM; Reuel NF; Zhang J; Nelson J; Mu B; Hilmer A; Strano M
    J Am Chem Soc; 2014 Jan; 136(2):713-24. PubMed ID: 24354436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunoassay with single-walled carbon nanotubes as near-infrared fluorescent labels.
    Iizumi Y; Okazaki T; Ikehara Y; Ogura M; Fukata S; Yudasaka M
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7665-70. PubMed ID: 23927721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defect-Induced Near-Infrared Photoluminescence of Single-Walled Carbon Nanotubes Treated with Polyunsaturated Fatty Acids.
    Chiu CF; Saidi WA; Kagan VE; Star A
    J Am Chem Soc; 2017 Apr; 139(13):4859-4865. PubMed ID: 28288512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creating fluorescent quantum defects in carbon nanotubes using hypochlorite and light.
    Lin CW; Bachilo SM; Zheng Y; Tsedev U; Huang S; Weisman RB; Belcher AM
    Nat Commun; 2019 Jun; 10(1):2874. PubMed ID: 31253811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent sp
    Mandal AK; Wu X; Ferreira JS; Kim M; Powell LR; Kwon H; Groc L; Wang Y; Cognet L
    Sci Rep; 2020 Mar; 10(1):5286. PubMed ID: 32210295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum defects as versatile anchors for carbon nanotube functionalization.
    Mann FA; Galonska P; Herrmann N; Kruss S
    Nat Protoc; 2022 Mar; 17(3):727-747. PubMed ID: 35110739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring Enzyme Activity Using Near-Infrared Fluorescent Single-Walled Carbon Nanotubes.
    Basu S; Hendler-Neumark A; Bisker G
    ACS Sens; 2024 May; 9(5):2237-2253. PubMed ID: 38669585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of single-walled carbon nanotubes functionalized with platinum nanoparticles to sense breast cancer cells in 4T1 model to X-ray radiation.
    Aghaei A; Shaterian M; Danafar H; Likozar B; Šuligoj A; Gyergyek S
    Mikrochim Acta; 2023 Apr; 190(5):184. PubMed ID: 37069457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Walled Carbon Nanotubes as Fluorescent Probes for Monitoring the Self-Assembly and Morphology of Peptide/Polymer Hybrid Hydrogels.
    Wulf V; Bisker G
    Nano Lett; 2022 Nov; 22(22):9205-9214. PubMed ID: 36259520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme-catalyzed oxidation facilitates the return of fluorescence for single-walled carbon nanotubes.
    Chiu CF; Barth BA; Kotchey GP; Zhao Y; Gogick KA; Saidi WA; Petoud S; Star A
    J Am Chem Soc; 2013 Sep; 135(36):13356-64. PubMed ID: 23672715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosensing with Fluorescent Carbon Nanotubes.
    Ackermann J; Metternich JT; Herbertz S; Kruss S
    Angew Chem Int Ed Engl; 2022 Apr; 61(18):e202112372. PubMed ID: 34978752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel covalent approach to bio-conjugate silver coated single walled carbon nanotubes with antimicrobial peptide.
    Chaudhari AA; Ashmore D; Nath SD; Kate K; Dennis V; Singh SR; Owen DR; Palazzo C; Arnold RD; Miller ME; Pillai SR
    J Nanobiotechnology; 2016 Jul; 14(1):58. PubMed ID: 27412259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-Infrared Fluorescence Lifetime Imaging of Biomolecules with Carbon Nanotubes.
    Sistemich L; Galonska P; Stegemann J; Ackermann J; Kruss S
    Angew Chem Int Ed Engl; 2023 Jun; 62(24):e202300682. PubMed ID: 36891826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-Infrared Photoluminescence of Carbon Nanotubes Powered by Biochemical Reactions of Luciferin/Luciferase.
    Tanaka T; Higuchi M; Tsuzuki M; Hiratsuka A; Kataura H
    J Phys Chem Lett; 2023 Jun; 14(25):5955-5959. PubMed ID: 37345759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.