These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

546 related articles for article (PubMed ID: 29674711)

  • 1. Microtubule dynamics: an interplay of biochemistry and mechanics.
    Brouhard GJ; Rice LM
    Nat Rev Mol Cell Biol; 2018 Jul; 19(7):451-463. PubMed ID: 29674711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-range, through-lattice coupling improves predictions of microtubule catastrophe.
    Kim T; Rice LM
    Mol Biol Cell; 2019 Jun; 30(12):1451-1462. PubMed ID: 30943103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interplay between microtubule dynamics and intracellular organization.
    de Forges H; Bouissou A; Perez F
    Int J Biochem Cell Biol; 2012 Feb; 44(2):266-74. PubMed ID: 22108200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The contribution of αβ-tubulin curvature to microtubule dynamics.
    Brouhard GJ; Rice LM
    J Cell Biol; 2014 Nov; 207(3):323-34. PubMed ID: 25385183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micron-scale geometrical features of microtubules as regulators of microtubule organization.
    Mani N; Wijeratne SS; Subramanian R
    Elife; 2021 Jun; 10():. PubMed ID: 34114950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tubulin cofactors and Arl2 are cage-like chaperones that regulate the soluble αβ-tubulin pool for microtubule dynamics.
    Nithianantham S; Le S; Seto E; Jia W; Leary J; Corbett KD; Moore JK; Al-Bassam J
    Elife; 2015 Jul; 4():. PubMed ID: 26208336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The growth speed of microtubules with XMAP215-coated beads coupled to their ends is increased by tensile force.
    Trushko A; Schäffer E; Howard J
    Proc Natl Acad Sci U S A; 2013 Sep; 110(36):14670-5. PubMed ID: 23964126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding force-generating microtubule systems through in vitro reconstitution.
    Vleugel M; Kok M; Dogterom M
    Cell Adh Migr; 2016 Sep; 10(5):475-494. PubMed ID: 27715396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transitions in microtubule C-termini conformations as a possible dendritic signaling phenomenon.
    Priel A; Tuszynski JA; Woolf NJ
    Eur Biophys J; 2005 Dec; 35(1):40-52. PubMed ID: 16184388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanisms underlying microtubule growth dynamics.
    Cleary JM; Hancock WO
    Curr Biol; 2021 May; 31(10):R560-R573. PubMed ID: 34033790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mutation uncouples the tubulin conformational and GTPase cycles, revealing allosteric control of microtubule dynamics.
    Geyer EA; Burns A; Lalonde BA; Ye X; Piedra FA; Huffaker TC; Rice LM
    Elife; 2015 Oct; 4():e10113. PubMed ID: 26439009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into allosteric control of microtubule dynamics from a buried β-tubulin mutation that causes faster growth and slower shrinkage.
    Ye X; Kim T; Geyer EA; Rice LM
    Protein Sci; 2020 Jun; 29(6):1429-1439. PubMed ID: 32077153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties of tubulin intra- and inter-dimer interfaces and their implications for microtubule dynamic instability.
    Fedorov VA; Orekhov PS; Kholina EG; Zhmurov AA; Ataullakhanov FI; Kovalenko IB; Gudimchuk NB
    PLoS Comput Biol; 2019 Aug; 15(8):e1007327. PubMed ID: 31469822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstituting dynamic microtubule polymerization regulation by TOG domain proteins.
    Al-Bassam J
    Methods Enzymol; 2014; 540():131-48. PubMed ID: 24630105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstitution of physiological microtubule dynamics using purified components.
    Kinoshita K; Arnal I; Desai A; Drechsel DN; Hyman AA
    Science; 2001 Nov; 294(5545):1340-3. PubMed ID: 11701928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CLASP Mediates Microtubule Repair by Restricting Lattice Damage and Regulating Tubulin Incorporation.
    Aher A; Rai D; Schaedel L; Gaillard J; John K; Liu Q; Altelaar M; Blanchoin L; Thery M; Akhmanova A
    Curr Biol; 2020 Jun; 30(11):2175-2183.e6. PubMed ID: 32359430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the assembly and activation of the microtubule nucleator γ-TuRC.
    Liu P; Zupa E; Neuner A; Böhler A; Loerke J; Flemming D; Ruppert T; Rudack T; Peter C; Spahn C; Gruss OJ; Pfeffer S; Schiebel E
    Nature; 2020 Feb; 578(7795):467-471. PubMed ID: 31856152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CLIP-170/tubulin-curved oligomers coassemble at microtubule ends and promote rescues.
    Arnal I; Heichette C; Diamantopoulos GS; Chrétien D
    Curr Biol; 2004 Dec; 14(23):2086-95. PubMed ID: 15589150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EB1 regulates microtubule dynamics and tubulin sheet closure in vitro.
    Vitre B; Coquelle FM; Heichette C; Garnier C; Chrétien D; Arnal I
    Nat Cell Biol; 2008 Apr; 10(4):415-21. PubMed ID: 18364701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microtubule-associated proteins and enzymes modifying tubulin.
    Peng N; Nakamura F
    Cytoskeleton (Hoboken); 2023 Mar; 80(3-4):60-76. PubMed ID: 36798013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.