These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 29674807)

  • 1. Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers.
    Ansari MH; Karami MA
    Smart Mater Struct; 2017 Jun; 26(6):. PubMed ID: 29674807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sub-cc nonlinear piezoelectric energy harvester for powering leadless pacemakers.
    Ansari MH; Karami MA
    J Intell Mater Syst Struct; 2018 Feb; 29(3):438-445. PubMed ID: 29674842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-frequency meandering piezoelectric vibration energy harvester.
    Berdy DF; Srisungsitthisunti P; Jung B; Xu X; Rhoads JF; Peroulis D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):846-58. PubMed ID: 22622969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the influence of the viscoelastic material as a heart muscle simulator on the powering leadless pacemaker from heartbeats by using a piezoelectric beam.
    Siami M; Jahani K; Esmaili P; Rezaee M
    Proc Inst Mech Eng H; 2022 Sep; 236(9):1414-1429. PubMed ID: 35861574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.
    Wang P; Du H
    Rev Sci Instrum; 2015 Jul; 86(7):075002. PubMed ID: 26233403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Frequency and Broadband Vibration Energy Harvesting Using Base-Mounted Piezoelectric Transducers.
    Koven R; Mills M; Gale R; Aksak B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1735-1743. PubMed ID: 28816659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical Modeling of a Doubly Clamped Flexible Piezoelectric Energy Harvester with Axial Excitation and Its Experimental Characterization.
    Mei J; Fan Q; Li L; Chen D; Xu L; Dai Q; Liu Q
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34205008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of a Novel Ultra-Low-Frequency Rotational Energy Harvester Based on a Double-Frequency Up-Conversion Mechanism.
    Li N; Xia H; Yang C; Luo T; Qin L
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling, Validation, and Performance of Two Tandem Cylinder Piezoelectric Energy Harvesters in Water Flow.
    Song R; Hou C; Yang C; Yang X; Guo Q; Shan X
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bimorph piezoelectric vibration energy harvester with flexible 3D meshed-core structure for low frequency vibration.
    Tsukamoto T; Umino Y; Shiomi S; Yamada K; Suzuki T
    Sci Technol Adv Mater; 2018; 19(1):660-668. PubMed ID: 30275914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Magnetically Coupled Piezoelectric-Electromagnetic Low-Frequency Multidirection Hybrid Energy Harvester.
    Zhu Y; Zhang Z; Zhang P; Tan Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Investigation on a Novel Airfoil-Based Piezoelectric Energy Harvester for Aeroelastic Vibration.
    Shan X; Tian H; Cao H; Feng J; Xie T
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32722607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimodal Multidirectional Piezoelectric Vibration Energy Harvester by U-Shaped Structure with Cross-Connected Beams.
    Qin H; Mo S; Jiang X; Shang S; Wang P; Liu Y
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Power Density Improvement of Piezoelectric Energy Harvesters via a Novel Hybridization Scheme with Electromagnetic Transduction.
    Li Z; Xin C; Peng Y; Wang M; Luo J; Xie S; Pu H
    Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis and Experimental Validation of a Piezoelectric Harvester with Enhanced Frequency Bandwidth.
    Abramovich H; Har-Nes I
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 30029562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Powering a Real Cardiac Pacemaker by Natural Energy of a Heartbeat.
    Li N; Yi Z; Ma Y; Xie F; Huang Y; Tian Y; Dong X; Liu Y; Shao X; Li Y; Jin L; Liu J; Xu Z; Yang B; Zhang H
    ACS Nano; 2019 Mar; 13(3):2822-2830. PubMed ID: 30784259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Experimental Investigation of a Rotational Piezoelectric Energy Harvester with an Offset Distance from the Rotation Center.
    Chen J; Liu X; Wang H; Wang S; Guan M
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multidirectional Piezoelectric Vibration Energy Harvester Based on Cam Rotor Mechanism.
    Jiang X; Liu Y; Wei J; Yang H; Yin B; Qin H; Wang W
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A piezoelectric micro generator worked at low frequency and high acceleration based on PZT and phosphor bronze bonding.
    Tang G; Yang B; Hou C; Li G; Liu J; Chen X; Yang C
    Sci Rep; 2016 Dec; 6():38798. PubMed ID: 27929139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-frequency, broadband piezoelectric vibration energy harvester with folded trapezoidal beam.
    Wang H; Li B; Liu Y; Zhao W
    Rev Sci Instrum; 2019 Mar; 90(3):035001. PubMed ID: 30927805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.