These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 29674807)

  • 21. A Frequency Up-Converted Hybrid Energy Harvester Using Transverse Impact-Driven Piezoelectric Bimorph for Human-Limb Motion.
    Halim MA; Kabir MH; Cho H; Park JY
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31618939
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of Multi-Degree-Of-Freedom Piezoelectric Energy Harvester Using Interdigital Shaped Cantilevers.
    Cho H; Park J; Park JY
    J Nanosci Nanotechnol; 2016 May; 16(5):5252-4. PubMed ID: 27483909
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimentally Verified Analytical Models of Piezoelectric Cantilevers in Different Design Configurations.
    Machu Z; Rubes O; Sevecek O; Hadas Z
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695974
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin.
    Lee S; Youn BD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):629-45. PubMed ID: 21429855
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design and Optimization of Piezoelectric Cantilever Beam Vibration Energy Harvester.
    Xu Q; Gao A; Li Y; Jin Y
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630142
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using an elastic magnifier to increase power output and performance of heart-beat harvesters.
    Galbier AC; Karami MA
    Smart Mater Struct; 2017; 26(9):. PubMed ID: 29674808
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of Proof Mass Geometry on Piezoelectric Vibration Energy Harvesters.
    Alameh AH; Gratuze M; Elsayed MY; Nabki F
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29772706
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization of an Impact-Based Frequency Up-Converted Piezoelectric Vibration Energy Harvester for Wearable Devices.
    Aceti P; Rosso M; Ardito R; Pienazza N; Nastro A; Baù M; Ferrari M; Rouvala M; Ferrari V; Corigliano A
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772429
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Comparative Numerical Study on Piezoelectric Energy Harvester for Self-Powered Pacemaker Application.
    Kumar A; Kiran R; Kumar S; Chauhan VS; Kumar R; Vaish R
    Glob Chall; 2018 Jan; 2(1):1700084. PubMed ID: 31565302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Piezoelectric and Electromagnetic Hybrid Galloping Energy Harvester with the Magnet Embedded in the Bluff Body.
    Li X; Bi C; Li Z; Liu B; Wang T; Zhang S
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34071414
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A composite energy harvester based on human reciprocating motion.
    Gu X; He L; Wang H; Sun L; Zhou Z; Cheng G
    Rev Sci Instrum; 2023 Mar; 94(3):035004. PubMed ID: 37012818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Multi-Mode Broadband Vibration Energy Harvester Composed of Symmetrically Distributed U-Shaped Cantilever Beams.
    Huang X; Zhang C; Dai K
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33669395
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An experimental study on a piezoelectric vibration energy harvester for self-powered cardiac pacemakers.
    Xie F; Qian X; Li N; Cui D; Zhang H; Xu Z
    Ann Transl Med; 2021 May; 9(10):880. PubMed ID: 34164514
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design optimization of PVDF-based piezoelectric energy harvesters.
    Song J; Zhao G; Li B; Wang J
    Heliyon; 2017 Sep; 3(9):e00377. PubMed ID: 28948235
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Piezoelectric Energy Harvesting from Low-Frequency Vibrations Based on Magnetic Plucking and Indirect Impacts.
    Rosso M; Nastro A; Baù M; Ferrari M; Ferrari V; Corigliano A; Ardito R
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957468
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and analysis of a connected broadband multi-piezoelectric-bimorph- beam energy harvester.
    Zhang H; Afzalul K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jun; 61(6):1016-23. PubMed ID: 24859665
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flexible Energy Harvester on a Pacemaker Lead Using Multibeam Piezoelectric Composite Thin Films.
    Xu Z; Jin C; Cabe A; Escobedo D; Hao N; Trase I; Closson AB; Dong L; Nie Y; Elliott J; Feldman MD; Chen Z; Zhang JXJ
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34170-34179. PubMed ID: 32543828
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and Development of a Broadband Vibration Energy Harvester Suitable for Tractor Exhaust Cylinder Vibration.
    Ma X; Zhou T; Gong L; Zhang X; Yao F; Wang C
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616884
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Smart Knee Implant Using Triboelectric Energy Harvesters.
    Ibrahim A; Jain M; Salman E; Willing R; Towfighian S
    Smart Mater Struct; 2019 Feb; 28(2):. PubMed ID: 31258261
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crack Protective Layered Architecture of Lead-Free Piezoelectric Energy Harvester in Bistable Configuration.
    Rubes O; Machu Z; Sevecek O; Hadas Z
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33066546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.