These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 29675146)

  • 1. Efficient prediction of reaction paths through molecular graph and reaction network analysis.
    Kim Y; Kim JW; Kim Z; Kim WY
    Chem Sci; 2018 Jan; 9(4):825-835. PubMed ID: 29675146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated Prediction of Catalytic Mechanism and Rate Law Using Graph-Based Reaction Path Sampling.
    Habershon S
    J Chem Theory Comput; 2016 Apr; 12(4):1786-98. PubMed ID: 26938837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of ACE-Reaction on 26 Organic Reactions for Fully Automated Reaction Network Construction and Microkinetic Analysis.
    Kim JW; Kim Y; Baek KY; Lee K; Kim WY
    J Phys Chem A; 2019 Jun; 123(22):4796-4805. PubMed ID: 31074624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sampling reactive pathways with random walks in chemical space: Applications to molecular dissociation and catalysis.
    Habershon S
    J Chem Phys; 2015 Sep; 143(9):094106. PubMed ID: 26342358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heuristics-Guided Exploration of Reaction Mechanisms.
    Bergeler M; Simm GN; Proppe J; Reiher M
    J Chem Theory Comput; 2015 Dec; 11(12):5712-22. PubMed ID: 26642988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mining hydroformylation in complex reaction network
    Takahashi K; Satoshi M
    RSC Adv; 2021 Jul; 11(38):23235-23240. PubMed ID: 35479801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An automated method for graph-based chemical space exploration and transition state finding.
    Ramos-Sánchez P; Harvey JN; Gámez JA
    J Comput Chem; 2023 Jan; 44(1):27-42. PubMed ID: 36239971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Chemical Calculations to Trace Back Reaction Paths for the Prediction of Reactants.
    Sumiya Y; Harabuchi Y; Nagata Y; Maeda S
    JACS Au; 2022 May; 2(5):1181-1188. PubMed ID: 35647604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Catalysis Using the Artificial Force Induced Reaction Method.
    Sameera WM; Maeda S; Morokuma K
    Acc Chem Res; 2016 Apr; 49(4):763-73. PubMed ID: 27023677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring transition state structures for intramolecular pathways by the artificial force induced reaction method.
    Maeda S; Taketsugu T; Morokuma K
    J Comput Chem; 2014 Jan; 35(2):166-73. PubMed ID: 24186858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ReNeGate: A Reaction Network Graph-Theoretical Tool for Automated Mechanistic Studies in Computational Homogeneous Catalysis.
    Hashemi A; Bougueroua S; Gaigeot MP; Pidko EA
    J Chem Theory Comput; 2022 Dec; 18(12):7470-7482. PubMed ID: 36321652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Context-Driven Exploration of Complex Chemical Reaction Networks.
    Simm GN; Reiher M
    J Chem Theory Comput; 2017 Dec; 13(12):6108-6119. PubMed ID: 29084387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Feasible Organic Reaction Pathways Using Heuristically Aided Quantum Chemistry.
    Rappoport D; Aspuru-Guzik A
    J Chem Theory Comput; 2019 Jul; 15(7):4099-4112. PubMed ID: 31244127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leveraging algorithmic search in quantum chemical reaction path finding.
    Nakao A; Harabuchi Y; Maeda S; Tsuda K
    Phys Chem Chem Phys; 2022 May; 24(17):10305-10310. PubMed ID: 35437567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward Predicting Full Catalytic Cycle Using Automatic Reaction Path Search Method: A Case Study on HCo(CO)3-Catalyzed Hydroformylation.
    Maeda S; Morokuma K
    J Chem Theory Comput; 2012 Feb; 8(2):380-5. PubMed ID: 26596590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic Proposal of Multistep Reaction Mechanisms using a Graph-Driven Search.
    Ismail I; Stuttaford-Fowler HBVA; Ochan Ashok C; Robertson C; Habershon S
    J Phys Chem A; 2019 Apr; 123(15):3407-3417. PubMed ID: 30900894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An automated method to find reaction mechanisms and solve the kinetics in organometallic catalysis.
    Varela JA; Vázquez SA; Martínez-Núñez E
    Chem Sci; 2017 May; 8(5):3843-3851. PubMed ID: 28966776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Networks Approach to Modeling Enzymatic Reactions.
    Imhof P
    Methods Enzymol; 2016; 578():249-71. PubMed ID: 27497170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finding Reaction Pathways of Type A + B → X: Toward Systematic Prediction of Reaction Mechanisms.
    Maeda S; Morokuma K
    J Chem Theory Comput; 2011 Aug; 7(8):2335-45. PubMed ID: 26606607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.