These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 29675207)
1. A practical, organic-mediated, hybrid electrolyser that decouples hydrogen production at high current densities. Kirkaldy N; Chisholm G; Chen JJ; Cronin L Chem Sci; 2018 Feb; 9(6):1621-1626. PubMed ID: 29675207 [TBL] [Abstract][Full Text] [Related]
2. Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer. Symes MD; Cronin L Nat Chem; 2013 May; 5(5):403-9. PubMed ID: 23609091 [TBL] [Abstract][Full Text] [Related]
3. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Rausch B; Symes MD; Chisholm G; Cronin L Science; 2014 Sep; 345(6202):1326-30. PubMed ID: 25214625 [TBL] [Abstract][Full Text] [Related]
4. Phenazine-based Compound Realizing Separate Hydrogen and Oxygen Production in Electrolytic Water Splitting. Wu K; Li H; Liang S; Ma Y; Yang J Angew Chem Int Ed Engl; 2023 Jun; 62(23):e202303563. PubMed ID: 36994849 [TBL] [Abstract][Full Text] [Related]
5. Organic Proton-Buffer Electrode to Separate Hydrogen and Oxygen Evolution in Acid Water Electrolysis. Ma Y; Guo Z; Dong X; Wang Y; Xia Y Angew Chem Int Ed Engl; 2019 Mar; 58(14):4622-4626. PubMed ID: 30706609 [TBL] [Abstract][Full Text] [Related]
6. Electrocatalytic and photocatalytic hydrogen evolution integrated with organic oxidation. You B; Han G; Sun Y Chem Commun (Camb); 2018 Jun; 54(47):5943-5955. PubMed ID: 29761801 [TBL] [Abstract][Full Text] [Related]
7. Water Splitting via Decoupled Photocatalytic Water Oxidation and Electrochemical Proton Reduction Mediated by Electron-Coupled-Proton Buffer. Li F; Yu F; Du J; Wang Y; Zhu Y; Li X; Sun L Chem Asian J; 2017 Oct; 12(20):2666-2669. PubMed ID: 28885769 [TBL] [Abstract][Full Text] [Related]
8. Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell. Li W; Bonakdarpour A; Gyenge E; Wilkinson DP ChemSusChem; 2013 Nov; 6(11):2137-43. PubMed ID: 24039111 [TBL] [Abstract][Full Text] [Related]
9. A bio-inspired, small molecule electron-coupled-proton buffer for decoupling the half-reactions of electrolytic water splitting. Rausch B; Symes MD; Cronin L J Am Chem Soc; 2013 Sep; 135(37):13656-9. PubMed ID: 23978004 [TBL] [Abstract][Full Text] [Related]
10. Green Hydrogen Production From Non-Traditional Water Sources: A Sustainable Energy Solution With Hydrogen Storage and Distribution. Qureshi F; Asif M; Khan A; Aldawsari H; Yusuf M; Khan MY Chem Rec; 2024 Oct; 24(10):e202400080. PubMed ID: 39313980 [TBL] [Abstract][Full Text] [Related]
11. Solar-Driven Water Oxidation and Decoupled Hydrogen Production Mediated by an Electron-Coupled-Proton Buffer. Bloor LG; Solarska R; Bienkowski K; Kulesza PJ; Augustynski J; Symes MD; Cronin L J Am Chem Soc; 2016 Jun; 138(21):6707-10. PubMed ID: 27159121 [TBL] [Abstract][Full Text] [Related]
12. Tuning Redox Active Polyoxometalates for Efficient Electron-Coupled Proton-Buffer-Mediated Water Splitting. Lei J; Yang JJ; Liu T; Yuan RM; Deng DR; Zheng MS; Chen JJ; Cronin L; Dong QF Chemistry; 2019 Sep; 25(49):11432-11436. PubMed ID: 31309625 [TBL] [Abstract][Full Text] [Related]
13. Acidic enol electrooxidation-coupled hydrogen production with ampere-level current density. Chen ZJ; Dong J; Wu J; Shao Q; Luo N; Xu M; Sun Y; Tang Y; Peng J; Cheng HM Nat Commun; 2023 Jul; 14(1):4210. PubMed ID: 37452034 [TBL] [Abstract][Full Text] [Related]
14. Electrochemical characterization of manganese oxides as a water oxidation catalyst in proton exchange membrane electrolysers. Hayashi T; Bonnet-Mercier N; Yamaguchi A; Suetsugu K; Nakamura R R Soc Open Sci; 2019 May; 6(5):190122. PubMed ID: 31218053 [TBL] [Abstract][Full Text] [Related]
15. Decoupling Hydrogen and Oxygen Production in Acidic Water Electrolysis Using a Polytriphenylamine-Based Battery Electrode. Ma Y; Dong X; Wang Y; Xia Y Angew Chem Int Ed Engl; 2018 Mar; 57(11):2904-2908. PubMed ID: 29384260 [TBL] [Abstract][Full Text] [Related]
16. Innovative Strategies for Electrocatalytic Water Splitting. You B; Sun Y Acc Chem Res; 2018 Jul; 51(7):1571-1580. PubMed ID: 29537825 [TBL] [Abstract][Full Text] [Related]
17. Membrane-Based Electrolysis for Hydrogen Production: A Review. Ahmad Kamaroddin MF; Sabli N; Tuan Abdullah TA; Siajam SI; Abdullah LC; Abdul Jalil A; Ahmad A Membranes (Basel); 2021 Oct; 11(11):. PubMed ID: 34832039 [TBL] [Abstract][Full Text] [Related]
18. An Investigation of a (Vinylbenzyl) Trimethylammonium and McHugh PJ; Das AK; Wallace AG; Kulshrestha V; Shahi VK; Symes MD Membranes (Basel); 2021 Jun; 11(6):. PubMed ID: 34199371 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of Nanoporous Nickel-Iron Hydroxylphosphate Composite as Bifunctional and Reversible Catalyst for Highly Efficient Intermittent Water Splitting. Lei Z; Bai J; Li Y; Wang Z; Zhao C ACS Appl Mater Interfaces; 2017 Oct; 9(41):35837-35846. PubMed ID: 28967253 [TBL] [Abstract][Full Text] [Related]
20. Sonochemical and sonoelectrochemical production of hydrogen. Islam MH; Burheim OS; Pollet BG Ultrason Sonochem; 2019 Mar; 51():533-555. PubMed ID: 30442455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]