These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29675447)

  • 1. Extended depth of focus for coherence-based cellular imaging.
    Yin B; Hyun C; Gardecki JA; Tearney GJ
    Optica; 2017 Aug; 4(8):959-965. PubMed ID: 29675447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uniform focusing with an extended depth range and increased working distance for optical coherence tomography by an ultrathin monolith fiber probe.
    Qiu J; Han T; Liu Z; Meng J; Ding Z
    Opt Lett; 2020 Feb; 45(4):976-979. PubMed ID: 32058521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Miniature all-fiber axicon probe with extended Bessel focus for optical coherence tomography.
    Wang W; Wang G; Ma J; Cheng L; Guan BO
    Opt Express; 2019 Jan; 27(2):358-366. PubMed ID: 30696123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth.
    Yi L; Sun L; Ding W
    J Biomed Opt; 2017 Oct; 22(10):1-8. PubMed ID: 29076306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling, optimization, and validation of an extended-depth-of-field optical coherence tomography probe based on a mirror tunnel.
    Okoro C; Cunningham CR; Baillargeon AR; Wartak A; Tearney GJ
    Appl Opt; 2021 Mar; 60(8):2393-2399. PubMed ID: 33690340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and fabrication of an optical probe with a phase filter for extended depth of focus.
    Xing J; Kim J; Yoo H
    Opt Express; 2016 Jan; 24(2):1037-44. PubMed ID: 26832486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. μOCT imaging using depth of focus extension by self-imaging wavefront division in a common-path fiber optic probe.
    Yin B; Chu KK; Liang CP; Singh K; Reddy R; Tearney GJ
    Opt Express; 2016 Mar; 24(5):5555-5564. PubMed ID: 29092377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D in vivo imaging with extended-focus optical coherence microscopy.
    Chen Y; Trinh LA; Fingler J; Fraser SE
    J Biophotonics; 2017 Nov; 10(11):1411-1420. PubMed ID: 28417564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endoscopic micro-optical coherence tomography with extended depth of focus using a binary phase spatial filter.
    Kim J; Xing J; Nam HS; Song JW; Kim JW; Yoo H
    Opt Lett; 2017 Feb; 42(3):379-382. PubMed ID: 28146481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interferometric synthetic aperture microscopy for extended focus optical coherence microscopy.
    Coquoz S; Bouwens A; Marchand PJ; Extermann J; Lasser T
    Opt Express; 2017 Nov; 25(24):30807-30819. PubMed ID: 29221107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel endoscope with increased depth of field for imaging human nasal tissue by microscopic optical coherence tomography.
    Schulz-Hildebrandt H; Pieper M; Stehmar C; Ahrens M; Idel C; Wollenberg B; König P; Hüttmann G
    Biomed Opt Express; 2018 Feb; 9(2):636-647. PubMed ID: 29552400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improve depth of field of optical coherence tomography using finite energy Airy beam.
    Zhang M; Ren Z; Yu P
    Opt Lett; 2019 Jun; 44(12):3158-3161. PubMed ID: 31199405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrathin fiber probes with extended depth of focus for optical coherence tomography.
    Lorenser D; Yang X; Sampson DD
    Opt Lett; 2012 May; 37(10):1616-8. PubMed ID: 22627514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range.
    Lee KS; Rolland JP
    Opt Lett; 2008 Aug; 33(15):1696-8. PubMed ID: 18670507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endomicroscopic optical coherence tomography for cellular resolution imaging of gastrointestinal tracts.
    Luo Y; Cui D; Yu X; Bo E; Wang X; Wang N; Braganza CS; Chen S; Liu X; Xiong Q; Chen S; Chen S; Liu L
    J Biophotonics; 2018 Apr; 11(4):e201700141. PubMed ID: 28787543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D cellular-resolution imaging in arteries using few-mode interferometry.
    Yin B; Piao Z; Nishimiya K; Hyun C; Gardecki JA; Mauskapf A; Jaffer FA; Tearney GJ
    Light Sci Appl; 2019; 8():104. PubMed ID: 31798843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated-optics-based swept-source optical coherence tomography.
    Nguyen VD; Weiss N; Beeker W; Hoekman M; Leinse A; Heideman RG; van Leeuwen TG; Kalkman J
    Opt Lett; 2012 Dec; 37(23):4820-2. PubMed ID: 23202057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo optical coherence tomography imaging of human skin: norm and pathology.
    Gladkova ND; Petrova GA; Nikulin NK; Radenska-Lopovok SG; Snopova LB; Chumakov YP; Nasonova VA; Gelikonov VM; Gelikonov GV; Kuranov RV; Sergeev AM; Feldchtein FI
    Skin Res Technol; 2000 Feb; 6(1):6-16. PubMed ID: 11428936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depth-encoded synthetic aperture optical coherence tomography of biological tissues with extended focal depth.
    Mo J; de Groot M; de Boer JF
    Opt Express; 2015 Feb; 23(4):4935-45. PubMed ID: 25836528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast simulation and design of the fiber probe with a fiber-based pupil filter for optical coherence tomography using the eigenmode expansion approach.
    Qiu J; Meng J; Liu Z; Han T; Ding Z
    Opt Express; 2021 Jan; 29(2):2172-2183. PubMed ID: 33726418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.