These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 29675633)

  • 1. Vapor nucleation paths in lyophobic nanopores.
    Tinti A; Giacomello A; Casciola CM
    Eur Phys J E Soft Matter; 2018 Apr; 41(4):52. PubMed ID: 29675633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrusion and extrusion of water in hydrophobic nanopores.
    Tinti A; Giacomello A; Grosu Y; Casciola CM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(48):E10266-E10273. PubMed ID: 29138311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleation of Capillary Bridges and Bubbles in Nanoconfined CO
    Desgranges C; Delhommelle J
    Langmuir; 2019 Nov; 35(47):15401-15409. PubMed ID: 31675236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New device to measure dynamic intrusion/extrusion cycles of lyophobic heterogeneous systems.
    Guillemot L; Galarneau A; Vigier G; Abensur T; Charlaix É
    Rev Sci Instrum; 2012 Oct; 83(10):105105. PubMed ID: 23126802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrusion and extrusion of water in hydrophobic mesopores.
    Lefevre B; Saugey A; Barrat JL; Bocquet L; Charlaix E; Gobin PF; Vigier G
    J Chem Phys; 2004 Mar; 120(10):4927-38. PubMed ID: 15267355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bubble nucleation in simple and molecular liquids via the largest spherical cavity method.
    Gonzalez MA; Abascal JL; Valeriani C; Bresme F
    J Chem Phys; 2015 Apr; 142(15):154903. PubMed ID: 25903906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous nucleation from a supercooled ionic liquid on a carbon surface.
    He X; Shen Y; Hung FR; Santiso EE
    J Chem Phys; 2016 Dec; 145(21):211919. PubMed ID: 28799378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suspensions of lyophobic nanoporous particles as smart materials for energy absorption.
    Belogorlov AA; Borman VD; Khlistunov IA; Tronin VN; Neimark AV
    J Colloid Interface Sci; 2021 Oct; 600():229-242. PubMed ID: 34022721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wetting and cavitation pathways on nanodecorated surfaces.
    Amabili M; Lisi E; Giacomello A; Casciola CM
    Soft Matter; 2016 Mar; 12(12):3046-55. PubMed ID: 26905783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleation in hydrophobic cylindrical pores: a lattice model.
    Saugey A; Bocquet L; Barrat JL
    J Phys Chem B; 2005 Apr; 109(14):6520-6. PubMed ID: 16851732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of entropy on the nucleation of cavitation bubbles in water under tension.
    Menzl G; Dellago C
    J Chem Phys; 2016 Dec; 145(21):211918. PubMed ID: 28799367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What keeps nanopores boiling.
    Giacomello A
    J Chem Phys; 2023 Sep; 159(11):. PubMed ID: 37724724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular simulation of homogeneous nucleation of crystals of an ionic liquid from the melt.
    He X; Shen Y; Hung FR; Santiso EE
    J Chem Phys; 2015 Sep; 143(12):124506. PubMed ID: 26429023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure control in interfacial systems: Atomistic simulations of vapor nucleation.
    Marchio S; Meloni S; Giacomello A; Valeriani C; Casciola CM
    J Chem Phys; 2018 Feb; 148(6):064706. PubMed ID: 29448782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple improvements to classical bubble nucleation models.
    Tanaka KK; Tanaka H; Angélil R; Diemand J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022401. PubMed ID: 26382410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical, Thermal, and Electrical Energy Storage in a Single Working Body: Electrification and Thermal Effects upon Pressure-Induced Water Intrusion-Extrusion in Nanoporous Solids.
    Grosu Y; Mierzwa M; Eroshenko VA; Pawlus S; Chorażewski M; Nedelec JM; Grolier JE
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7044-7049. PubMed ID: 28177602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics and kinetics of vapor bubbles nucleation in one-component liquids.
    Alekseechkin NV
    J Phys Chem B; 2012 Aug; 116(31):9445-59. PubMed ID: 22804478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel and global approach of the complex and interconnected phenomena related to the contact line movement past a solid surface from hydrophobized silica gel.
    Suciu CV; Iwatsubo T; Yaguchi K; Ikenaga M
    J Colloid Interface Sci; 2005 Mar; 283(1):196-214. PubMed ID: 15694440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An atomistically informed multiscale approach to the intrusion and extrusion of water in hydrophobic nanopores.
    Paulo G; Gubbiotti A; Giacomello A
    J Chem Phys; 2023 May; 158(20):. PubMed ID: 37222298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleation and hysteresis of vapor-liquid phase transitions in confined spaces: effects of fluid-wall interaction.
    Men Y; Yan Q; Jiang G; Zhang X; Wang W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051602. PubMed ID: 19518462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.