These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29675849)

  • 21. Influence of P(VDF-TrFE) Membranes with Different Surface Potentials on the Activity and Angiogenic Function of Human Umbilical Vein Endothelial Cells.
    Xu Y; Cheng M; Zhu P; Yang S; Lai C; Xu S
    Biomed Res Int; 2022; 2022():5693994. PubMed ID: 36199755
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Dependence of Dielectric and Ferroelectric Properties on Crystal Phase Structures of the Hydrogenized P(VDF-TrFE) Films With Different Thermal Processing.
    Xia W; Wang Z; Xing J; Cao C; Xu Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Oct; 63(10):1674-1680. PubMed ID: 27479960
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrasound-activated piezoelectric P(VDF-TrFE)/boron nitride nanotube composite films promote differentiation of human SaOS-2 osteoblast-like cells.
    Genchi GG; Sinibaldi E; Ceseracciu L; Labardi M; Marino A; Marras S; De Simoni G; Mattoli V; Ciofani G
    Nanomedicine; 2018 Oct; 14(7):2421-2432. PubMed ID: 28552646
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An In Vitro Comparative Study of Multisource Derived Human Mesenchymal Stem Cells for Bone Tissue Engineering.
    Zhang Y; Xing Y; Jia L; Ji Y; Zhao B; Wen Y; Xu X
    Stem Cells Dev; 2018 Dec; 27(23):1634-1645. PubMed ID: 30234437
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Poly(vinylidene-trifluoroethylene)/barium titanate composite for in vivo support of bone formation.
    Lopes HB; Santos Tde S; de Oliveira FS; Freitas GP; de Almeida AL; Gimenes R; Rosa AL; Beloti MM
    J Biomater Appl; 2014 Jul; 29(1):104-12. PubMed ID: 24319054
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Poly(Vinylidene Fluoride-Trifluorethylene)/barium titanate membrane promotes de novo bone formation and may modulate gene expression in osteoporotic rat model.
    Scalize PH; Bombonato-Prado KF; de Sousa LG; Rosa AL; Beloti MM; Semprini M; Gimenes R; de Almeida AL; de Oliveira FS; Hallak Regalo SC; Siessere S
    J Mater Sci Mater Med; 2016 Dec; 27(12):180. PubMed ID: 27770393
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell Adhesion-Mediated Piezoelectric Self-Stimulation on Polydopamine-Modified Poly(vinylidene fluoride) Membranes.
    Xue G; Zhang Y; Xie T; Zhang Z; Liu Q; Li X; Gou X
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17361-17371. PubMed ID: 33823586
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Manipulation of Heterogeneous Surface Electric Potential Promotes Osteogenesis by Strengthening RGD Peptide Binding and Cellular Mechanosensing.
    Bai Y; Zheng X; Zhong X; Cui Q; Zhang S; Wen X; Heng BC; He S; Shen Y; Zhang J; Wei Y; Deng X; Zhang X
    Adv Mater; 2023 Jun; 35(24):e2209769. PubMed ID: 36934418
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro biocompatibility of poly(vinylidene fluoride-trifluoroethylene)/barium titanate composite using cultures of human periodontal ligament fibroblasts and keratinocytes.
    Teixeira LN; Crippa GE; Trabuco AC; Gimenes R; Zaghete MA; Palioto DB; de Oliveira PT; Rosa AL; Beloti MM
    Acta Biomater; 2010 Mar; 6(3):979-89. PubMed ID: 19703597
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface potential-governed cellular osteogenic differentiation on ferroelectric polyvinylidene fluoride trifluoroethylene films.
    Tang B; Zhang B; Zhuang J; Wang Q; Dong L; Cheng K; Weng W
    Acta Biomater; 2018 Jul; 74():291-301. PubMed ID: 29729416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electreted Sandwich Membranes with Persistent Electrical Stimulation for Enhanced Bone Regeneration.
    Qiao Z; Lian M; Liu X; Zhang X; Han Y; Ni B; Xu R; Yu B; Xu Q; Dai K
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):31655-31666. PubMed ID: 35797478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Species variation in the spontaneous calcification of bone marrow-derived mesenchymal stem cells.
    Huang YZ; Cai JQ; Lv FJ; Xie HL; Yang ZM; Huang YC; Deng L
    Cytotherapy; 2013 Mar; 15(3):323-9. PubMed ID: 23312450
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The enhanced performance of bone allografts using osteogenic-differentiated adipose-derived mesenchymal stem cells.
    Schubert T; Xhema D; Vériter S; Schubert M; Behets C; Delloye C; Gianello P; Dufrane D
    Biomaterials; 2011 Dec; 32(34):8880-91. PubMed ID: 21872925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acceleration of bone regeneration in bioactive glass/gelatin composite scaffolds seeded with bone marrow-derived mesenchymal stem cells over-expressing bone morphogenetic protein-7.
    Kargozar S; Hashemian SJ; Soleimani M; Milan PB; Askari M; Khalaj V; Samadikuchaksaraie A; Hamzehlou S; Katebi AR; Latifi N; Mozafari M; Baino F
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():688-698. PubMed ID: 28415516
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interleukin-6/interleukin-6 receptor complex promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells.
    Xie Z; Tang S; Ye G; Wang P; Li J; Liu W; Li M; Wang S; Wu X; Cen S; Zheng G; Ma M; Wu Y; Shen H
    Stem Cell Res Ther; 2018 Jan; 9(1):13. PubMed ID: 29357923
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue.
    Xu L; Liu Y; Sun Y; Wang B; Xiong Y; Lin W; Wei Q; Wang H; He W; Wang B; Li G
    Stem Cell Res Ther; 2017 Dec; 8(1):275. PubMed ID: 29208029
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone.
    Zaky SH; Lee KW; Gao J; Jensen A; Verdelis K; Wang Y; Almarza AJ; Sfeir C
    Acta Biomater; 2017 May; 54():95-106. PubMed ID: 28110067
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced osteogenic differentiation and bone regeneration of poly(lactic-co-glycolic acid) by graphene via activation of PI3K/Akt/GSK-3β/β-catenin signal circuit.
    Wu X; Zheng S; Ye Y; Wu Y; Lin K; Su J
    Biomater Sci; 2018 May; 6(5):1147-1158. PubMed ID: 29561031
    [TBL] [Abstract][Full Text] [Related]  

  • 39. P(VDF-TrFE)/BaTiO3 Nanoparticle Composite Films Mediate Piezoelectric Stimulation and Promote Differentiation of SH-SY5Y Neuroblastoma Cells.
    Genchi GG; Ceseracciu L; Marino A; Labardi M; Marras S; Pignatelli F; Bruschini L; Mattoli V; Ciofani G
    Adv Healthc Mater; 2016 Jul; 5(14):1808-20. PubMed ID: 27283784
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Angiogenic and osteogenic regeneration in rats via calcium phosphate scaffold and endothelial cell co-culture with human bone marrow mesenchymal stem cells (MSCs), human umbilical cord MSCs, human induced pluripotent stem cell-derived MSCs and human embryonic stem cell-derived MSCs.
    Chen W; Liu X; Chen Q; Bao C; Zhao L; Zhu Z; Xu HHK
    J Tissue Eng Regen Med; 2018 Jan; 12(1):191-203. PubMed ID: 28098961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.