These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44. Administration of tauroursodeoxycholic acid enhances osteogenic differentiation of bone marrow-derived mesenchymal stem cells and bone regeneration. Cha BH; Jung MJ; Moon BK; Kim JS; Ma Y; Arai Y; Noh M; Shin JY; Kim BS; Lee SH Bone; 2016 Feb; 83():73-81. PubMed ID: 26499839 [TBL] [Abstract][Full Text] [Related]
45. Growth factors and bone regeneration. Implications of barrier membranes. Zellin G Swed Dent J Suppl; 1998; 129():7-65. PubMed ID: 9672999 [TBL] [Abstract][Full Text] [Related]
46. Mineralization and bone regeneration using a bioactive elastin-like recombinamer membrane. Tejeda-Montes E; Klymov A; Nejadnik MR; Alonso M; Rodriguez-Cabello JC; Walboomers XF; Mata A Biomaterials; 2014 Sep; 35(29):8339-47. PubMed ID: 24996755 [TBL] [Abstract][Full Text] [Related]
47. Craniofacial defect regeneration using engineered bone marrow mesenchymal stromal cells. Yang Y; Hallgrimsson B; Putnins EE J Biomed Mater Res A; 2011 Oct; 99(1):74-85. PubMed ID: 21800417 [TBL] [Abstract][Full Text] [Related]
48. Self-assembling peptide and nHA/CTS composite scaffolds promote bone regeneration through increasing seed cell adhesion. Zhang Z; Wu G; Cao Y; Liu C; Jin Y; Wang Y; Yang L; Guo J; Zhu L Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():445-454. PubMed ID: 30274077 [TBL] [Abstract][Full Text] [Related]
49. Injectable hydrogels from enzyme-catalyzed crosslinking as BMSCs-laden scaffold for bone repair and regeneration. Zhang Y; Chen H; Zhang T; Zan Y; Ni T; Cao Y; Wang J; Liu M; Pei R Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():841-849. PubMed ID: 30606598 [TBL] [Abstract][Full Text] [Related]
50. An Innovative Approach for Enhancing Bone Defect Healing Using PLGA Scaffolds Seeded with Extracorporeal-shock-wave-treated Bone Marrow Mesenchymal Stem Cells (BMSCs). Chen Y; Xu J; Huang Z; Yu M; Zhang Y; Chen H; Ma Z; Liao H; Hu J Sci Rep; 2017 Mar; 7():44130. PubMed ID: 28272494 [TBL] [Abstract][Full Text] [Related]
51. Functionalization of Silk Fibroin Electrospun Scaffolds via BMSC Affinity Peptide Grafting through Oxidative Self-Polymerization of Dopamine for Bone Regeneration. Wu J; Cao L; Liu Y; Zheng A; Jiao D; Zeng D; Wang X; Kaplan DL; Jiang X ACS Appl Mater Interfaces; 2019 Mar; 11(9):8878-8895. PubMed ID: 30777748 [TBL] [Abstract][Full Text] [Related]
52. [Development and preclinical studies of insulating membranes based on poly-3-hydroxybutyrate-co-3-hydroxyvalerate for guided bone regeneration]. Ivanov SY; Bonartsev AP; Gazhva YV; Zharkova II; Mukhametshin RF; Mahina TK; Myshkina VL; Bonartseva GA; Voinova VV; Andreeva NV; Akulina EA; Kharitonova ES; Shaitan KV; Muraev AA Biomed Khim; 2015; 61(6):717-23. PubMed ID: 26716743 [TBL] [Abstract][Full Text] [Related]
53. Combined use of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and platelet rich plasma (PRP) stimulates proliferation and differentiation of myoblasts in vitro: new therapeutic perspectives for skeletal muscle repair/regeneration. Sassoli C; Vallone L; Tani A; Chellini F; Nosi D; Zecchi-Orlandini S Cell Tissue Res; 2018 Jun; 372(3):549-570. PubMed ID: 29404727 [TBL] [Abstract][Full Text] [Related]
54. Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair. Guillaume O; Geven MA; Sprecher CM; Stadelmann VA; Grijpma DW; Tang TT; Qin L; Lai Y; Alini M; de Bruijn JD; Yuan H; Richards RG; Eglin D Acta Biomater; 2017 May; 54():386-398. PubMed ID: 28286037 [TBL] [Abstract][Full Text] [Related]
55. In vitro and in vivo evaluation of osteogenesis of human umbilical cord blood-derived mesenchymal stem cells on partially demineralized bone matrix. Liu G; Li Y; Sun J; Zhou H; Zhang W; Cui L; Cao Y Tissue Eng Part A; 2010 Mar; 16(3):971-82. PubMed ID: 19839720 [TBL] [Abstract][Full Text] [Related]
56. Ginkgo biloba extract promotes osteogenic differentiation of human bone marrow mesenchymal stem cells in a pathway involving Wnt/β-catenin signaling. Gu Q; Chen C; Zhang Z; Wu Z; Fan X; Zhang Z; Di W; Shi L Pharmacol Res; 2015 Jul; 97():70-8. PubMed ID: 25917209 [TBL] [Abstract][Full Text] [Related]
57. Caridade SG; Mano JF Tissue Eng Part A; 2017 Dec; 23(23-24):1502-1533. PubMed ID: 28903686 [TBL] [Abstract][Full Text] [Related]
58. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity. Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808 [TBL] [Abstract][Full Text] [Related]
59. Pre-culture period of mesenchymal stem cells in osteogenic media influences their in vivo bone forming potential. Castano-Izquierdo H; Alvarez-Barreto J; van den Dolder J; Jansen JA; Mikos AG; Sikavitsas VI J Biomed Mater Res A; 2007 Jul; 82(1):129-38. PubMed ID: 17269144 [TBL] [Abstract][Full Text] [Related]
60. Potential of Osteoblastic Cells Derived from Bone Marrow and Adipose Tissue Associated with a Polymer/Ceramic Composite to Repair Bone Tissue. Freitas GP; Lopes HB; Almeida ALG; Abuna RPF; Gimenes R; Souza LEB; Covas DT; Beloti MM; Rosa AL Calcif Tissue Int; 2017 Sep; 101(3):312-320. PubMed ID: 28451713 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]