These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29676064)

  • 1. Machine learning-based in-line holographic sensing of unstained malaria-infected red blood cells.
    Go T; Kim JH; Byeon H; Lee SJ
    J Biophotonics; 2018 Sep; 11(9):e201800101. PubMed ID: 29676064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free sensor for automatic identification of erythrocytes using digital in-line holographic microscopy and machine learning.
    Go T; Byeon H; Lee SJ
    Biosens Bioelectron; 2018 Apr; 103():12-18. PubMed ID: 29277009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning-based automatic sensing and size classification of microparticles using smartphone holographic microscopy.
    Go T; Yoon GY; Lee SJ
    Analyst; 2019 Feb; 144(5):1751-1760. PubMed ID: 30666996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated Detection of P. falciparum Using Machine Learning Algorithms with Quantitative Phase Images of Unstained Cells.
    Park HS; Rinehart MT; Walzer KA; Chi JT; Wax A
    PLoS One; 2016; 11(9):e0163045. PubMed ID: 27636719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Holographic analysis on deformation and restoration of malaria-infected red blood cells by antimalarial drug.
    Byeon H; Ha YR; Lee SJ
    J Biomed Opt; 2015 Nov; 20(11):115003. PubMed ID: 26544670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AI-based analysis of 3D position and orientation of red blood cells using a digital in-line holographic microscopy.
    Kim Y; Kim J; Seo E; Lee SJ
    Biosens Bioelectron; 2023 Jun; 229():115232. PubMed ID: 36963327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic detection and characterization of quantitative phase images of thalassemic red blood cells using a mask region-based convolutional neural network.
    Lin YH; Liao KY; Sung KB
    J Biomed Opt; 2020 Nov; 25(11):. PubMed ID: 33188571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional counting of morphologically normal human red blood cells via digital holographic microscopy.
    Yi F; Moon I; Lee YH
    J Biomed Opt; 2015 Jan; 20(1):016005. PubMed ID: 25567613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential classification system for recognition of malaria infection using peripheral blood cell images.
    Molina A; Alférez S; Boldú L; Acevedo A; Rodellar J; Merino A
    J Clin Pathol; 2020 Oct; 73(10):665-670. PubMed ID: 32179558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning algorithms for the detection of spurious white blood cell differentials due to erythrocyte lysis resistance.
    Bigorra L; Larriba I; Gutiérrez-Gallego R
    J Clin Pathol; 2019 Jun; 72(6):431-437. PubMed ID: 30992342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of living and dead microalgae cells with digital holography and verified in the East China Sea.
    Wang Y; Ju P; Wang S; Su J; Zhai W; Wu C
    Mar Pollut Bull; 2021 Feb; 163():111927. PubMed ID: 33352429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digital holographic deep learning of red blood cells for field-portable, rapid COVID-19 screening.
    O'Connor T; Shen JB; Liang BT; Javidi B
    Opt Lett; 2021 May; 46(10):2344-2347. PubMed ID: 33988579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognition and classification of red blood cells using digital holographic microscopy and data clustering with discriminant analysis.
    Liu R; Dey DK; Boss D; Marquet P; Javidi B
    J Opt Soc Am A Opt Image Sci Vis; 2011 Jun; 28(6):1204-10. PubMed ID: 21643406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell morphology-based classification of red blood cells using holographic imaging informatics.
    Yi F; Moon I; Javidi B
    Biomed Opt Express; 2016 Jun; 7(6):2385-99. PubMed ID: 27375953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning approaches classify clinical malaria outcomes based on haematological parameters.
    Morang'a CM; Amenga-Etego L; Bah SY; Appiah V; Amuzu DSY; Amoako N; Abugri J; Oduro AR; Cunnington AJ; Awandare GA; Otto TD
    BMC Med; 2020 Nov; 18(1):375. PubMed ID: 33250058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plankton classification with high-throughput submersible holographic microscopy and transfer learning.
    MacNeil L; Missan S; Luo J; Trappenberg T; LaRoche J
    BMC Ecol Evol; 2021 Jun; 21(1):123. PubMed ID: 34134620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deformability based cell margination--a simple microfluidic design for malaria-infected erythrocyte separation.
    Hou HW; Bhagat AA; Chong AG; Mao P; Tan KS; Han J; Lim CT
    Lab Chip; 2010 Oct; 10(19):2605-13. PubMed ID: 20689864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmodium life cycle stage classification based quantification of malaria parasitaemia in thin blood smears.
    Abbas N; Saba T; Rehman A; Mehmood Z; Kolivand H; Uddin M; Anjum A
    Microsc Res Tech; 2019 Mar; 82(3):283-295. PubMed ID: 30575213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D morphometry of red blood cells by digital holography.
    Memmolo P; Miccio L; Merola F; Gennari O; Netti PA; Ferraro P
    Cytometry A; 2014 Dec; 85(12):1030-6. PubMed ID: 25242067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning approach for automated screening of malaria parasite using light microscopic images.
    Das DK; Ghosh M; Pal M; Maiti AK; Chakraborty C
    Micron; 2013 Feb; 45():97-106. PubMed ID: 23218914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.