BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

746 related articles for article (PubMed ID: 29676259)

  • 21. Nix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinson's disease.
    Koentjoro B; Park JS; Sue CM
    Sci Rep; 2017 Mar; 7():44373. PubMed ID: 28281653
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of mitophagy by the Gp78 E3 ubiquitin ligase.
    Fu M; St-Pierre P; Shankar J; Wang PT; Joshi B; Nabi IR
    Mol Biol Cell; 2013 Apr; 24(8):1153-62. PubMed ID: 23427266
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications.
    Durcan TM; Fon EA
    Genes Dev; 2015 May; 29(10):989-99. PubMed ID: 25995186
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PINK1 Is Dispensable for Mitochondrial Recruitment of Parkin and Activation of Mitophagy in Cardiac Myocytes.
    Kubli DA; Cortez MQ; Moyzis AG; Najor RH; Lee Y; Gustafsson ÅB
    PLoS One; 2015; 10(6):e0130707. PubMed ID: 26110811
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glutamate excitotoxicity in neurons triggers mitochondrial and endoplasmic reticulum accumulation of Parkin, and, in the presence of N-acetyl cysteine, mitophagy.
    Van Laar VS; Roy N; Liu A; Rajprohat S; Arnold B; Dukes AA; Holbein CD; Berman SB
    Neurobiol Dis; 2015 Feb; 74():180-93. PubMed ID: 25478815
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PINK1/Parkin-mediated mitophagy in mammalian cells.
    Eiyama A; Okamoto K
    Curr Opin Cell Biol; 2015 Apr; 33():95-101. PubMed ID: 25697963
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control.
    Narendra DP; Youle RJ
    Antioxid Redox Signal; 2011 May; 14(10):1929-38. PubMed ID: 21194381
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PINK1-parkin-dependent mitophagy involves ubiquitination of mitofusins 1 and 2: Implications for Parkinson disease pathogenesis.
    Gegg ME; Schapira AH
    Autophagy; 2011 Feb; 7(2):243-5. PubMed ID: 21139416
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Global Landscape and Dynamics of Parkin and USP30-Dependent Ubiquitylomes in iNeurons during Mitophagic Signaling.
    Ordureau A; Paulo JA; Zhang J; An H; Swatek KN; Cannon JR; Wan Q; Komander D; Harper JW
    Mol Cell; 2020 Mar; 77(5):1124-1142.e10. PubMed ID: 32142685
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reactive oxygen species trigger Parkin/PINK1 pathway-dependent mitophagy by inducing mitochondrial recruitment of Parkin.
    Xiao B; Goh JY; Xiao L; Xian H; Lim KL; Liou YC
    J Biol Chem; 2017 Oct; 292(40):16697-16708. PubMed ID: 28848050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitophagy-dependent macrophage reprogramming protects against kidney fibrosis.
    Bhatia D; Chung KP; Nakahira K; Patino E; Rice MC; Torres LK; Muthukumar T; Choi AM; Akchurin OM; Choi ME
    JCI Insight; 2019 Dec; 4(23):. PubMed ID: 31639106
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutations in PINK1 and Parkin impair ubiquitination of Mitofusins in human fibroblasts.
    Rakovic A; Grünewald A; Kottwitz J; Brüggemann N; Pramstaller PP; Lohmann K; Klein C
    PLoS One; 2011 Mar; 6(3):e16746. PubMed ID: 21408142
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potential roles of neuronal nitric oxide synthase and the PTEN-induced kinase 1 (PINK1)/Parkin pathway for mitochondrial protein degradation in disuse-induced soleus muscle atrophy in adult rats.
    Uda M; Yoshihara T; Ichinoseki-Sekine N; Baba T; Yoshioka T
    PLoS One; 2020; 15(12):e0243660. PubMed ID: 33296434
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The endoplasmic reticulum-mitochondria interface is perturbed in PARK2 knockout mice and patients with PARK2 mutations.
    Gautier CA; Erpapazoglou Z; Mouton-Liger F; Muriel MP; Cormier F; Bigou S; Duffaure S; Girard M; Foret B; Iannielli A; Broccoli V; Dalle C; Bohl D; Michel PP; Corvol JC; Brice A; Corti O
    Hum Mol Genet; 2016 Jul; 25(14):2972-2984. PubMed ID: 27206984
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PINK1/parkin-mediated mitophagy pathway is related to neuroprotection by carnosic acid in SH-SY5Y cells.
    Lin CY; Tsai CW
    Food Chem Toxicol; 2019 Mar; 125():430-437. PubMed ID: 30707903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The ubiquitin-conjugating enzymes UBE2N, UBE2L3 and UBE2D2/3 are essential for Parkin-dependent mitophagy.
    Geisler S; Vollmer S; Golombek S; Kahle PJ
    J Cell Sci; 2014 Aug; 127(Pt 15):3280-93. PubMed ID: 24906799
    [TBL] [Abstract][Full Text] [Related]  

  • 37. WIPI2 positively regulates mitophagy by promoting mitochondrial recruitment of VCP.
    Lu G; Tan HWS; Schmauck-Medina T; Wang L; Chen J; Cho YL; Chen K; Zhang JZ; He W; Wu Y; Xia D; Zhou J; Fang EF; Fang L; Liu W; Shen HM
    Autophagy; 2022 Dec; 18(12):2865-2879. PubMed ID: 35389758
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Parkin-mediated ubiquitylation redistributes MITOL/March5 from mitochondria to peroxisomes.
    Koyano F; Yamano K; Kosako H; Kimura Y; Kimura M; Fujiki Y; Tanaka K; Matsuda N
    EMBO Rep; 2019 Dec; 20(12):e47728. PubMed ID: 31602805
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism.
    Narendra D; Walker JE; Youle R
    Cold Spring Harb Perspect Biol; 2012 Nov; 4(11):. PubMed ID: 23125018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation.
    Gelmetti V; De Rosa P; Torosantucci L; Marini ES; Romagnoli A; Di Rienzo M; Arena G; Vignone D; Fimia GM; Valente EM
    Autophagy; 2017 Apr; 13(4):654-669. PubMed ID: 28368777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.