These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 29676464)

  • 21. Two barcodes encoded by the type-1 PDZ and by phospho-Ser
    Nooh MM; Bahouth SW
    Cell Signal; 2017 Jan; 29():192-208. PubMed ID: 27816670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The CHY-Type Zinc Finger Protein FgChy1 Regulates Polarized Growth, Pathogenicity, and Microtubule Assembly in
    Cao S; Li W; Li C; Wang G; Jiang W; Sun H; Deng Y; Chen H
    Mol Plant Microbe Interact; 2021 Apr; 34(4):362-375. PubMed ID: 33369502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. FgRIC8 is involved in regulating vegetative growth, conidiation, deoxynivalenol production and virulence in Fusarium graminearum.
    Wu J; Liu Y; Lv W; Yue X; Que Y; Yang N; Zhang Z; Ma Z; Talbot NJ; Wang Z
    Fungal Genet Biol; 2015 Oct; 83():92-102. PubMed ID: 26341536
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RAS2 regulates growth and pathogenesis in Fusarium graminearum.
    Bluhm BH; Zhao X; Flaherty JE; Xu JR; Dunkle LD
    Mol Plant Microbe Interact; 2007 Jun; 20(6):627-36. PubMed ID: 17555271
    [TBL] [Abstract][Full Text] [Related]  

  • 25. FgMon1, a guanine nucleotide exchange factor of FgRab7, is important for vacuole fusion, autophagy and plant infection in Fusarium graminearum.
    Li Y; Li B; Liu L; Chen H; Zhang H; Zheng X; Zhang Z
    Sci Rep; 2015 Dec; 5():18101. PubMed ID: 26657788
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The transcription factor FgCrz1A is essential for fungal development, virulence, deoxynivalenol biosynthesis and stress responses in Fusarium graminearum.
    Chen L; Tong Q; Zhang C; Ding K
    Curr Genet; 2019 Feb; 65(1):153-166. PubMed ID: 29947970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recognising the signals for endosomal trafficking.
    Weeratunga S; Paul B; Collins BM
    Curr Opin Cell Biol; 2020 Aug; 65():17-27. PubMed ID: 32155566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of Fusarium graminearum Mes1 reveals roles in cell-surface organization and virulence.
    Rittenour WR; Harris SD
    Fungal Genet Biol; 2008 Jun; 45(6):933-46. PubMed ID: 18339563
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ESCRT-III accessory proteins regulate fungal development and plant infection in Fusarium graminearum.
    Xie Q; Chen A; Zhang Y; Zhang C; Hu Y; Luo Z; Wang B; Yun Y; Zhou J; Li G; Wang Z
    Curr Genet; 2019 Aug; 65(4):1041-1055. PubMed ID: 30927052
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular identification of a BAR domain-containing coat complex for endosomal recycling of transmembrane proteins.
    Simonetti B; Paul B; Chaudhari K; Weeratunga S; Steinberg F; Gorla M; Heesom KJ; Bashaw GJ; Collins BM; Cullen PJ
    Nat Cell Biol; 2019 Oct; 21(10):1219-1233. PubMed ID: 31576058
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Receptor sorting within endosomal trafficking pathway is facilitated by dynamic actin filaments.
    Ohashi E; Tanabe K; Henmi Y; Mesaki K; Kobayashi Y; Takei K
    PLoS One; 2011; 6(5):e19942. PubMed ID: 21625493
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Retromer-driven membrane tubulation separates endosomal recycling from Rab7/Ypt7-dependent fusion.
    Purushothaman LK; Arlt H; Kuhlee A; Raunser S; Ungermann C
    Mol Biol Cell; 2017 Mar; 28(6):783-791. PubMed ID: 28100638
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative high-content imaging identifies novel regulators of Neo1 trafficking at endosomes.
    Dalton LE; Bean BDM; Davey M; Conibear E
    Mol Biol Cell; 2017 Jun; 28(11):1539-1550. PubMed ID: 28404745
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The 5-oxoprolinase is required for conidiation, sexual reproduction, virulence and deoxynivalenol production of Fusarium graminearum.
    Yang P; Chen Y; Wu H; Fang W; Liang Q; Zheng Y; Olsson S; Zhang D; Zhou J; Wang Z; Zheng W
    Curr Genet; 2018 Feb; 64(1):285-301. PubMed ID: 28918485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Septins are involved in nuclear division, morphogenesis and pathogenicity in Fusarium graminearum.
    Chen A; Xie Q; Lin Y; Xu H; Shang W; Zhang J; Zhang D; Zheng W; Li G; Wang Z
    Fungal Genet Biol; 2016 Sep; 94():79-87. PubMed ID: 27387218
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Higher-order assembly of Sorting Nexin 16 controls tubulation and distribution of neuronal endosomes.
    Wang S; Zhao Z; Rodal AA
    J Cell Biol; 2019 Aug; 218(8):2600-2618. PubMed ID: 31253649
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards a molecular understanding of endosomal trafficking by Retromer and Retriever.
    Chen KE; Healy MD; Collins BM
    Traffic; 2019 Jul; 20(7):465-478. PubMed ID: 30993794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A role for novel lipid interactions in the dynamic recruitment of SNX27 to the T-cell immune synapse.
    Tello-Lafoz M; Ghai R; Collins B; Mérida I
    Bioarchitecture; 2014; 4(6):215-20. PubMed ID: 25996807
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential roles of three FgPLD genes in regulating development and pathogenicity in Fusarium graminearum.
    Ding M; Zhu Q; Liang Y; Li J; Fan X; Yu X; He F; Xu H; Liang Y; Yu J
    Fungal Genet Biol; 2017 Dec; 109():46-52. PubMed ID: 29079075
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A sorting nexin 17-binding domain within the LRP1 cytoplasmic tail mediates receptor recycling through the basolateral sorting endosome.
    Farfán P; Lee J; Larios J; Sotelo P; Bu G; Marzolo MP
    Traffic; 2013 Jul; 14(7):823-38. PubMed ID: 23593972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.