These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 29676973)

  • 1. Determination of Caries Lesion Activity: Reflection and Roughness for Characterization of Caries Progression.
    Ando M; Shaikh S; Eckert G
    Oper Dent; 2018; 43(3):301-306. PubMed ID: 29676973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Objective and quantitative assessment of caries lesion activity.
    Ando M; Fontana M; Eckert GJ; Arthur RA; Zhang H; Zero DT
    J Dent; 2018 Nov; 78():76-82. PubMed ID: 30134154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Knoop and Vickers surface microhardness and transverse microradiography for the study of early caries lesion formation in human and bovine enamel.
    Lippert F; Lynch RJ
    Arch Oral Biol; 2014 Jul; 59(7):704-10. PubMed ID: 24798979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study to quantify demineralized enamel in deciduous and permanent teeth using laser- and light-induced fluorescence techniques.
    Ando M; van Der Veen MH; Schemehorn BR; Stookey GK
    Caries Res; 2001; 35(6):464-70. PubMed ID: 11799288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Re- and Demineralization Characteristics of Enamel Depending on Baseline Mineral Loss and Lesion Depth in situ.
    Wierichs RJ; Lausch J; Meyer-Lueckel H; Esteves-Oliveira M
    Caries Res; 2016; 50(2):141-50. PubMed ID: 27043915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative evaluation of the kinetics of human enamel simulated caries using photothermal radiometry and modulated luminescence.
    Hellen A; Mandelis A; Finer Y; Amaechi BT
    J Biomed Opt; 2011 Jul; 16(7):071406. PubMed ID: 21806252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of hydration on assessment of early enamel lesion using swept-source optical coherence tomography.
    Nazari A; Sadr A; Campillo-Funollet M; Nakashima S; Shimada Y; Tagami J; Sumi Y
    J Biophotonics; 2013 Feb; 6(2):171-7. PubMed ID: 22517731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of laser fluorescence and longitudinal microradiography for quantitative assessment of in vitro enamel caries.
    Hafström-Björkman U; Sundström F; de Josselin de Jong E; Oliveby A; Angmar-Månsson B
    Caries Res; 1992; 26(4):241-7. PubMed ID: 1423438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of perpendicular reflection intensity for assessment of caries lesion activity/inactivity.
    Neuhaus KW; Nyvad B; Lussi A; Jaruszewski L
    Caries Res; 2011; 45(4):408-14. PubMed ID: 21849786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of laser fluorescence in monitoring non-cavitated caries lesion progression on smooth surfaces in vitro.
    Rodrigues JA; Sarti CS; Assunção CM; Arthur RA; Lussi A; Diniz MB
    Lasers Med Sci; 2017 Nov; 32(8):1793-1800. PubMed ID: 28669068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of methylcellulose acid gel lesions created in human and bovine enamel.
    Lippert F; Butler A; Lynch RJ
    Caries Res; 2013; 47(1):50-5. PubMed ID: 23108261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histological validation of electrical resistance measurements in the diagnosis of occlusal caries.
    Ricketts DN; Kidd EA; Liepins PJ; Wilson RF
    Caries Res; 1996; 30(2):148-55. PubMed ID: 8833140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging artificial caries on the occlusal surfaces with polarization-sensitive optical coherence tomography.
    Jones RS; Darling CL; Featherstone JD; Fried D
    Caries Res; 2006; 40(2):81-9. PubMed ID: 16508263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model to investigate xerostomia-related dental caries.
    Jansma J; Vissink A; Gravenmade EJ; de Josselin de Jong E; Jongebloed WL; Retief DH
    Caries Res; 1988; 22(6):357-61. PubMed ID: 3214850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ fluoride response of caries lesions with different mineral distributions at baseline.
    Lippert F; Lynch RJ; Eckert GJ; Kelly SA; Hara AT; Zero DT
    Caries Res; 2011; 45(1):47-55. PubMed ID: 21293122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of caries progression by resin infiltration in situ.
    Paris S; Meyer-Lueckel H
    Caries Res; 2010; 44(1):47-54. PubMed ID: 20090328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Lesion Baseline Severity and Mineral Distribution on Remineralization and Progression of Human and Bovine Dentin Caries Lesions.
    Lippert F; Churchley D; Lynch RJ
    Caries Res; 2015; 49(5):467-76. PubMed ID: 26228732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Some aspects of artificial caries lesion formation of human dental enamel in vitro.
    de Groot JF; Borggreven JM; Driessens FC
    J Biol Buccale; 1986 Jun; 14(2):125-31. PubMed ID: 3525524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Research methods in dentistry. 6. In vivo and in vitro methods for studying caries lesion progression].
    Huysmans MC; Thomas RZ
    Ned Tijdschr Tandheelkd; 2004 Dec; 111(12):471-6. PubMed ID: 15646681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Microradiographic investigations of carious changes in the enamel in the ground sections made perpendicularly to tooth axis].
    Mizuhashi T; Suga S
    Shigaku; 1990 Aug; 78(2):283-312. PubMed ID: 2134968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.