These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
470 related articles for article (PubMed ID: 29677439)
1. Nanoparticle-Based Phototriggered Cancer Immunotherapy and Its Domino Effect in the Tumor Microenvironment. Rajendrakumar SK; Uthaman S; Cho CS; Park IK Biomacromolecules; 2018 Jun; 19(6):1869-1887. PubMed ID: 29677439 [TBL] [Abstract][Full Text] [Related]
2. Immunomodulatory effects of current cancer treatment and the consequences for follow-up immunotherapeutics. Mooradian MJ; Sullivan RJ Future Oncol; 2017 Aug; 13(18):1649-1663. PubMed ID: 28776423 [TBL] [Abstract][Full Text] [Related]
3. Optimizing Tumor Microenvironment for Cancer Immunotherapy: β-Glucan-Based Nanoparticles. Zhang M; Kim JA; Huang AY Front Immunol; 2018; 9():341. PubMed ID: 29535722 [TBL] [Abstract][Full Text] [Related]
4. Application of nanotechnology in circumventing immunotolerance. Ma Y; Shen Y; Zhu B; Li D; Liu J Pharmazie; 2020 Oct; 75(10):470-477. PubMed ID: 33305719 [TBL] [Abstract][Full Text] [Related]
5. Metabolic Regulation of Tregs in Cancer: Opportunities for Immunotherapy. Wang H; Franco F; Ho PC Trends Cancer; 2017 Aug; 3(8):583-592. PubMed ID: 28780935 [TBL] [Abstract][Full Text] [Related]
6. Nanoparticle-Mediated Remodeling of the Tumor Microenvironment to Enhance Immunotherapy. Musetti S; Huang L ACS Nano; 2018 Dec; 12(12):11740-11755. PubMed ID: 30508378 [TBL] [Abstract][Full Text] [Related]
7. Potential applications of nanoparticles for tumor microenvironment remodeling to ameliorate cancer immunotherapy. Bai Y; Wang Y; Zhang X; Fu J; Xing X; Wang C; Gao L; Liu Y; Shi L Int J Pharm; 2019 Oct; 570():118636. PubMed ID: 31446027 [TBL] [Abstract][Full Text] [Related]
8. Turning cold tumors into hot tumors: harnessing the potential of tumor immunity using nanoparticles. Rodallec A; Sicard G; Fanciullino R; Benzekry S; Lacarelle B; Milano G; Ciccolini J Expert Opin Drug Metab Toxicol; 2018 Nov; 14(11):1139-1147. PubMed ID: 30354685 [TBL] [Abstract][Full Text] [Related]
9. Emerging Prospects for Nanoparticle-Enabled Cancer Immunotherapy. Buabeid MA; Arafa EA; Murtaza G J Immunol Res; 2020; 2020():9624532. PubMed ID: 32377541 [TBL] [Abstract][Full Text] [Related]
10. Nanoparticles for tumor immunotherapy. Zang X; Zhao X; Hu H; Qiao M; Deng Y; Chen D Eur J Pharm Biopharm; 2017 Jun; 115():243-256. PubMed ID: 28323111 [TBL] [Abstract][Full Text] [Related]
11. Cancer immunotherapy: Current applications and challenges. Sun JY; Lu XJ Cancer Lett; 2020 Jun; 480():1-3. PubMed ID: 32229188 [No Abstract] [Full Text] [Related]
12. Enhancing cancer immunotherapy with photodynamic therapy and nanoparticle: making tumor microenvironment hotter to make immunotherapeutic work better. Thiruppathi J; Vijayan V; Park IK; Lee SE; Rhee JH Front Immunol; 2024; 15():1375767. PubMed ID: 38646546 [TBL] [Abstract][Full Text] [Related]
13. Reversal of the immunosuppressive tumor microenvironment by nanoparticle-based activation of immune-associated cells. Qi FL; Wang MF; Li BZ; Lu ZF; Nie GJ; Li SP Acta Pharmacol Sin; 2020 Jul; 41(7):895-901. PubMed ID: 32467568 [TBL] [Abstract][Full Text] [Related]
14. Engineering nanoparticles to locally activate T cells in the tumor microenvironment. Wang D; Wang T; Yu H; Feng B; Zhou L; Zhou F; Hou B; Zhang H; Luo M; Li Y Sci Immunol; 2019 Jul; 4(37):. PubMed ID: 31300478 [TBL] [Abstract][Full Text] [Related]
15. Engineering Nanoparticles to Reprogram the Tumor Immune Microenvironment for Improved Cancer Immunotherapy. Saeed M; Gao J; Shi Y; Lammers T; Yu H Theranostics; 2019; 9(26):7981-8000. PubMed ID: 31754376 [TBL] [Abstract][Full Text] [Related]
16. Clinical development of immunotherapy for prostate cancer. Noguchi M; Koga N; Igawa T; Itoh K Int J Urol; 2017 Sep; 24(9):675-680. PubMed ID: 28636142 [TBL] [Abstract][Full Text] [Related]
17. Role of the Immune Component of Tumor Microenvironment in the Efficiency of Cancer Treatment: Perspectives for the Personalized Therapy. Stakheyeva M; Riabov V; Mitrofanova I; Litviakov N; Choynzonov E; Cherdyntseva N; Kzhyshkowska J Curr Pharm Des; 2017; 23(32):4807-4826. PubMed ID: 28714406 [TBL] [Abstract][Full Text] [Related]
18. Lipid-based nanosystems: the next generation of cancer immune therapy. Cheng Z; Fobian SF; Gurrieri E; Amin M; D'Agostino VG; Falahati M; Zalba S; Debets R; Garrido MJ; Saeed M; Seynhaeve ALB; Balcioglu HE; Ten Hagen TLM J Hematol Oncol; 2024 Jul; 17(1):53. PubMed ID: 39030582 [TBL] [Abstract][Full Text] [Related]
19. Modulation of the tumor microenvironment by intratumoral administration of IMO-2125, a novel TLR9 agonist, for cancer immunotherapy. Wang D; Jiang W; Zhu F; Mao X; Agrawal S Int J Oncol; 2018 Sep; 53(3):1193-1203. PubMed ID: 29956749 [TBL] [Abstract][Full Text] [Related]
20. Nanoparticle-based strategies for cancer immunotherapy and immunodiagnostics. Grimaldi AM; Incoronato M; Salvatore M; Soricelli A Nanomedicine (Lond); 2017 Oct; 12(19):2349-2365. PubMed ID: 28868980 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]