BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

718 related articles for article (PubMed ID: 29677493)

  • 1. Polyamine Control of Translation Elongation Regulates Start Site Selection on Antizyme Inhibitor mRNA via Ribosome Queuing.
    Ivanov IP; Shin BS; Loughran G; Tzani I; Young-Baird SK; Cao C; Atkins JF; Dever TE
    Mol Cell; 2018 Apr; 70(2):254-264.e6. PubMed ID: 29677493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of Ribosomal Pausing by eIF5A Is Necessary to Maintain the Fidelity of Start Codon Selection.
    Manjunath H; Zhang H; Rehfeld F; Han J; Chang TC; Mendell JT
    Cell Rep; 2019 Dec; 29(10):3134-3146.e6. PubMed ID: 31801078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. eIF5A Functions Globally in Translation Elongation and Termination.
    Schuller AP; Wu CC; Dever TE; Buskirk AR; Green R
    Mol Cell; 2017 Apr; 66(2):194-205.e5. PubMed ID: 28392174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. eIF5A facilitates translation termination globally and promotes the elongation of many non polyproline-specific tripeptide sequences.
    Pelechano V; Alepuz P
    Nucleic Acids Res; 2017 Jul; 45(12):7326-7338. PubMed ID: 28549188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. eIF1 discriminates against suboptimal initiation sites to prevent excessive uORF translation genome-wide.
    Zhou F; Zhang H; Kulkarni SD; Lorsch JR; Hinnebusch AG
    RNA; 2020 Apr; 26(4):419-438. PubMed ID: 31915290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translational autoregulation of the S. cerevisiae high-affinity polyamine transporter Hol1.
    Vindu A; Shin BS; Choi K; Christenson ET; Ivanov IP; Cao C; Banerjee A; Dever TE
    Mol Cell; 2021 Oct; 81(19):3904-3918.e6. PubMed ID: 34375581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ribosome queuing enables non-AUG translation to be resistant to multiple protein synthesis inhibitors.
    Kearse MG; Goldman DH; Choi J; Nwaezeapu C; Liang D; Green KM; Goldstrohm AC; Todd PK; Green R; Wilusz JE
    Genes Dev; 2019 Jul; 33(13-14):871-885. PubMed ID: 31171704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Not4 and Not5 modulate translation elongation by Rps7A ubiquitination, Rli1 moonlighting, and condensates that exclude eIF5A.
    Allen GE; Panasenko OO; Villanyi Z; Zagatti M; Weiss B; Pagliazzo L; Huch S; Polte C; Zahoran S; Hughes CS; Pelechano V; Ignatova Z; Collart MA
    Cell Rep; 2021 Aug; 36(9):109633. PubMed ID: 34469733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring efficiency of translation initiation and elongation from ribosome profiling.
    Szavits-Nossan J; Ciandrini L
    Nucleic Acids Res; 2020 Sep; 48(17):9478-9490. PubMed ID: 32821926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. eIF5A and EF-P: two unique translation factors are now traveling the same road.
    Rossi D; Kuroshu R; Zanelli CF; Valentini SR
    Wiley Interdiscip Rev RNA; 2014; 5(2):209-22. PubMed ID: 24402910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyamine sensing by nascent ornithine decarboxylase antizyme stimulates decoding of its mRNA.
    Kurian L; Palanimurugan R; Gödderz D; Dohmen RJ
    Nature; 2011 Sep; 477(7365):490-4. PubMed ID: 21900894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of polyamines in translation.
    Dever TE; Ivanov IP
    J Biol Chem; 2018 Nov; 293(48):18719-18729. PubMed ID: 30323064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple forms of mouse antizyme inhibitor 1 mRNA differentially regulated by polyamines.
    Murakami Y; Ohkido M; Takizawa H; Murai N; Matsufuji S
    Amino Acids; 2014 Mar; 46(3):575-83. PubMed ID: 24077669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blockade of EIF5A hypusination limits colorectal cancer growth by inhibiting MYC elongation.
    Coni S; Serrao SM; Yurtsever ZN; Di Magno L; Bordone R; Bertani C; Licursi V; Ianniello Z; Infante P; Moretti M; Petroni M; Guerrieri F; Fatica A; Macone A; De Smaele E; Di Marcotullio L; Giannini G; Maroder M; Agostinelli E; Canettieri G
    Cell Death Dis; 2020 Dec; 11(12):1045. PubMed ID: 33303756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid substrates impose polyamine, eIF5A, or hypusine requirement for peptide synthesis.
    Shin BS; Katoh T; Gutierrez E; Kim JR; Suga H; Dever TE
    Nucleic Acids Res; 2017 Aug; 45(14):8392-8402. PubMed ID: 28637321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. eIF5A binds to translational machinery components and affects translation in yeast.
    Zanelli CF; Maragno AL; Gregio AP; Komili S; Pandolfi JR; Mestriner CA; Lustri WR; Valentini SR
    Biochem Biophys Res Commun; 2006 Oct; 348(4):1358-66. PubMed ID: 16914118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stringency of start codon selection modulates autoregulation of translation initiation factor eIF5.
    Loughran G; Sachs MS; Atkins JF; Ivanov IP
    Nucleic Acids Res; 2012 Apr; 40(7):2898-906. PubMed ID: 22156057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translational regulation by uORFs and start codon selection stringency.
    Dever TE; Ivanov IP; Hinnebusch AG
    Genes Dev; 2023 Jun; 37(11-12):474-489. PubMed ID: 37433636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of ribosome scanning and recycling revealed by translation complex profiling.
    Archer SK; Shirokikh NE; Beilharz TH; Preiss T
    Nature; 2016 Jul; 535(7613):570-4. PubMed ID: 27437580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bi-directional ribosome scanning controls the stringency of start codon selection.
    Gu Y; Mao Y; Jia L; Dong L; Qian SB
    Nat Commun; 2021 Nov; 12(1):6604. PubMed ID: 34782646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.