BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 29677801)

  • 21. Steam Reforming of Model Bio-Oil Aqueous Fraction Using Ni-(Cu, Co, Cr)/SBA-15 Catalysts.
    Calles JA; Carrero A; Vizcaíno AJ; García-Moreno L; Megía PJ
    Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30691053
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stable hydrogen production from ethanol through steam reforming reaction over nickel-containing smectite-derived catalyst.
    Yoshida H; Yamaoka R; Arai M
    Int J Mol Sci; 2014 Dec; 16(1):350-62. PubMed ID: 25547495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ni/MgO-MgAl2O4 Catalysts with Bimodal Pore Structure for Steam-CO2-Reforming of Methane.
    Kim BH; Yang EH; Moon DJ; Kim SW
    J Nanosci Nanotechnol; 2015 Aug; 15(8):5959-62. PubMed ID: 26369180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of a Ceramic Foam Catalyst Using Polymer Foam Scrap via the Replica Technique for Dry Reforming.
    Yeetsorn R; Tungkamani S; Maiket Y
    ACS Omega; 2022 Feb; 7(5):4202-4213. PubMed ID: 35155913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Steam reforming of biomass gasification tar using benzene as a model compound over various Ni supported metal oxide catalysts.
    Park HJ; Park SH; Sohn JM; Park J; Jeon JK; Kim SS; Park YK
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S101-3. PubMed ID: 19369069
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Approaches to the design of efficient and stable catalysts for biofuel reforming into syngas: doping the mesoporous MgAl
    Sadykov VA; Eremeev NF; Sadovskaya E; Fedorova JE; Arapova MV; Bobrova LN; Ishchenko AV; Krieger TA; Melgunov MS; Glazneva TS; Kaichev VV; Rogov VA
    Dalton Trans; 2023 Jun; 52(25):8756-8769. PubMed ID: 37317694
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effective catalytic steam reforming of naphthalene over Ni-modified ZSM-5 via one-pot hydrothermal synthesis.
    Liu Y; Liu L; Diao X; Liang J; Wu C; Sun Y
    Waste Manag; 2022 Jun; 147():1-9. PubMed ID: 35594746
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrogen production from oxidative steam reforming of bio-butanol over CoIr-based catalysts: effect of the support.
    Cai W; Piscina PR; Gabrowska K; Homs N
    Bioresour Technol; 2013 Jan; 128():467-71. PubMed ID: 23201530
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metal catalysts for steam reforming of tar derived from the gasification of lignocellulosic biomass.
    Li D; Tamura M; Nakagawa Y; Tomishige K
    Bioresour Technol; 2015 Feb; 178():53-64. PubMed ID: 25455089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sulfur poisoning mechanism of steam reforming catalysts: an X-ray absorption near edge structure (XANES) spectroscopic study.
    Chen Y; Xie C; Li Y; Song C; Bolin TB
    Phys Chem Chem Phys; 2010 Jun; 12(21):5707-11. PubMed ID: 20431820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis of Rh/Macro-Porous Alumina Over Micro-Channel Plate and Its Catalytic Activity Tests for Diesel Reforming.
    Seong YB; Kim YS; Park NK; Lee TJ
    J Nanosci Nanotechnol; 2015 Nov; 15(11):8832-6. PubMed ID: 26726602
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic reforming of toluene as tar model compound: effect of Ce and Ce-Mg promoter using Ni/olivine catalyst.
    Zhang R; Wang H; Hou X
    Chemosphere; 2014 Feb; 97():40-6. PubMed ID: 24275153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Producing hydrogen by catalytic steam reforming of methanol using non-noble metal catalysts.
    Deng Y; Li S; Appels L; Dewil R; Zhang H; Baeyens J; Mikulcic H
    J Environ Manage; 2022 Nov; 321():116019. PubMed ID: 36029634
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions.
    Li S; Gong J
    Chem Soc Rev; 2014 Nov; 43(21):7245-56. PubMed ID: 25182070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ethanol steam reforming on Ni/Al2O3 catalysts: effect of the addition of Zn and Pt.
    Buitrago-Sierra R; Ruiz-Martínez J; Serrano-Ruiz JC; Rodríguez-Reinoso F; Sepúlveda-Escribano A
    J Colloid Interface Sci; 2012 Oct; 383(1):148-54. PubMed ID: 22796067
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrogen from ethanol reforming with aqueous fraction of pine pyrolysis oil with and without chemical looping.
    Zin RM; Ross AB; Jones JM; Dupont V
    Bioresour Technol; 2015 Jan; 176():257-66. PubMed ID: 25461011
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Steam reforming of glycerol into hydrogen over nano-size Ni-based hydrotalcite-like catalysts.
    Hur E; Moon DJ
    J Nanosci Nanotechnol; 2011 Aug; 11(8):7394-8. PubMed ID: 22103204
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sustainable hydrogen production from bio-oil model compounds (meta-xylene) and mixtures (1-butanol, meta-xylene and furfural).
    Bizkarra K; Barrio VL; Arias PL; Cambra JF
    Bioresour Technol; 2016 Sep; 216():287-93. PubMed ID: 27253476
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrogen production from the steam reforming of bio-butanol over novel supported Co-based bimetallic catalysts.
    Cai W; de la Piscina PR; Homs N
    Bioresour Technol; 2012 Mar; 107():482-6. PubMed ID: 22244952
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of acidic sites and the catalytic reaction pathways on the Rh/ZrO2 catalysts for ethanol steam reforming.
    Zhong Z; Ang H; Choong C; Chen L; Huang L; Lin J
    Phys Chem Chem Phys; 2009 Feb; 11(5):872-80. PubMed ID: 19290335
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.